RAMSEY THEORY ON GENERALIZED BAIRE SPACE
DAN HATHAWAY

ABSTRACT. We show that although the Galvin-Prikry Theorem
does not hold on generalized Baire space with the standard topol-
ogy, there are similar theorems which do hold on generalized Baire
space with certain coarser topologies.

1. INTRODUCTION AND SOME DEFINITIONS

Given ordinals x and =, [k]? is the set of all subsets of x of order
type 7, and [k]<7 is the set of all subsets of x of order type < «. In
this paper, for an infinite cardinal x, we will consider colorings of [k]*
as opposed to [k|* for some u < k. Given a function ¢ : X — Y and
aset Z C X, ¢“Z is the image of Z under ¢. We use the convention
that natural numbers are ordinals, so for example 2 = {0,1}. We will
sometimes use the notation («, 3) for the set of all ordinals v such that
a << f,and (a, f] for the set («, 5) U {f}, etc.

Definition 1.1. Let x be a cardinal. Given sets A, B C k, a pair
(A, B) such that AN B = () is called a pattern. Given A, B C P(k),
an (A, B)-pattern is a pair (A, B) such that A € A and B € B. A
set X € [k]® matches the pattern (A, B) iff A C X and BN X = (.
Finally, [A; B] is the set of all X € [k]" which match (A4, B).

Definition 1.2. Fix A,B C P(k). X(A,B) is the collection of all
S C [k]" that are unions of sets of the form [A; B] for (A, B) € A x B.
That is, sets S for which there exists a set Q of (A, B)-patterns such
that S = {X € [k]" : X matches some (A, B) € Q}. We say that Q
generates S. A(A, B) is the collection of all S C [k]* such that S and
[k]" — S are in X(A, B).

Hence, § € X(A, B) iff there is a collection of patterns {(4;, B;) €
A x B : i € I} such that for each X € [x]", X € S iff (T € I)
X matches (A;, B;). Also, S € A(A, B) iff there are sets Q, Q™ of
(A, B)-patterns such that for each X € [x]", X € S iff X matches some
(A,B) € Q, and X ¢ S iff X matches some (A4, B) € 9Q~.

If A and B are closed under finite unions, then (A, B) is a topology:

it is closed under finite intersections and arbitrary unions, and has both
1
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() and [k]" as elements. If X(A, B) is a topology, then A(A, B) is the
collection of clopen sets in this topology. ¥ ([x]<*, [k]<") is the standard
topology on generalized Baire space of height k.

Definition 1.3. A collection S € [k]" is Ramsey as witnessed by H €
(k] iff one of the following holds:

1) (VX € [H]") X € S;

2) VX e [H") X ¢S.
We also say that H is homogeneous for §. More generally, we say that

¢ : [k]" — X is Ramsey just in case there is a set H € [k]" such that
|c“[H]"| = 1, and we say that H is homogeneous for c.

One of the earliest results in this area is the Galvin-Prikry The-
orem [2], which says that not only is every open set in the topology
Y([w]=, [w]<¥) Ramsey, but every Borel set in this topology is Ramsey
as well. Next, Silver [6] showed that every analytic set in the topol-
ogy X([w]<¥, [w]<¥) is Ramsey. Ellentuck generalized this further [I]
by showing that every analytic S in the topology ([w]<¥, [w]=¥) is
Ramsey. Assuming the Axiom of Choice, there exists a set S C [w]
that is not Ramsey. Moreover, Silver [6] showed that it is consistent
with ZFC that there is a logically simple, in fact Al set S C [w]“ that
is not Ramsey. On the other hand [3], if we assume the existence of
large cardinals, then every & C [w]|* that is in L(R) is Ramsey, where
L(R) is the smallest model of ZF that contains R and all the ordinals.
Let us also mention that Shelah [5] has shown that if x is a Ramsey
cardinal and ¢ : [k]* — 2 is Borel in a certain topology, then there is a
set H € [k]" such that |c“[H]¥| = 1.

It is natural to ask what sets S C [k]" for k > w are Ramsey. The
standard argument that there is a set S C [w]” that is not Ramsey
shows that when x > w, there is a set S C [k]® in A([x]¥, [&]<F)
that is not Ramsey (see Proposition . In Section [2| we make the
main contribution of this paper and show that when v < &, then all
A([r]=7, [k]=7) sets are Ramsey. It is open whether A can be replaced
with X.

Then, when we increase the B component of the patterns to include
all size < k sets, we must simultaneously decrease the A component.
In Section [3, we show that the following are equivalent for a cardinal
K> w:

e « is weakly compact;

o All A([k]?, [k]<") sets are Ramsey;

o All X([s]?, [k]<") sets are Ramsey;

o (Vn € w) all 3X([k]", [k]=") sets are Ramsey;
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The main technique of the section is a shrinking procedure. Here is the
basic version: fix a set of ([x]?, [k]<*)-patterns Q and a set H € [x]"
such that for each A € [H]?, there is some B, such that (A, Ba) € Q.
Then there is some H' € [H]® such that for all distinct a;,ay € H',
the first element of H' greater than a; and ay is also greater than all
elements of By, 4,3. Bach X € [H']" will match (A, B,), where A is
the set of the first two elements of X. We will modify this procedure
in the following section.

In Section [4] we strengthen the A component of the patterns and
show that if x is a Ramsey cardinal, then all X([x]<“, [k]<") sets are
Ramsey. In Section [, we strengthen the B component of the patterns
and show that if x is a measurable cardinal with a k-complete ultrafilter
U, then all X([rk]<¥,P(k) — U) sets are Ramsey. Finally, in Section
we consider sets of patterns that are within L, assuming 0% exists.

2. AL A([k]<7,[k]=7) SETS ARE RAMSEY IF 7 < Kk

Temporarily fix cardinals v < k. We call X([s]<7, [k]<7) the <~v-
box topology; it is indeed a topology, and basic open sets are “boxes”
determined by specifying membership requirements for <7 elements of
k. We have that

S([s1=7, [6]77) € S([s]77, [K]77).

It turns out that because X([x]<7, [r]<7) is so coarse, all A([k]<7, [k]<7)
sets are Ramsey. This follows from the next theorem:

Theorem 2.1. Let v < k be infinite cardinals. Let ¢ : [k]" — ~
be continuous, where [k]* is given the topology X([k|<7,[k]<7) and ~
is giwen the discrete topology. Then there is some H € [k|" that is
homogeneous for ¢, where |k — H| < ~y. If v is a reqular cardinal, we
can get an H such that |k — H| < 7.

Proof. We will find a set B € []=” such that ¢ | [0; B] is constant. If
is regular, we will have |B| < v. Let (¢, : @ < 7) be an enumeration of
v where each ordinal is listed v times. We will construct A,, B, € [k]~Y
for o < 7 such that A, N B, = 0 and the sets A, are pairwise disjoint.
At stage o < v, let B = [z, As. Note that |[B| < v, and if v is
regular, then |B| < . There are two possibilities.

Case 1. If ¢ | [0; B] is constantly ¢,, then terminate the construction.

Case 2. Fix some X € [(); B] such that ¢(X) # c,. Let d, = ¢(X).
Since ¢ is continuous, fix disjoint A,, B, such that X € [A,; B,] and
¢ | [Aa; Ba) is constantly d,. Note that since A, € X and X N B = (),
A, is disjoint from each Az for § < a.
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We claim that the construction must terminate before stage ~. Sup-
pose that this is not the case. Fix X € [0;U,., Ba]. Fix disjoint
A, B € [k]=7 such that X € [A; B] and ¢ | [A4; B] is constantly ¢(X).
Only < v many A,’s can intersect B, because the A,’s are pairwise
disjoint. Fix a < = such that A, is disjoint from B and ¢, = ¢(X).
Since A C X, A is disjoint from B,. We now have that A and A, are
each disjoint from B and B,. Thus, (AU A,, BU B,) is a pattern.
We now have that ¢ is constantly ¢(X) on [A; B] and it is constantly
do # co = ¢(X) on [A,; B,]. But since

[AUA,; BUB,| C [A; B] N [As; Bal,
this is impossible. l

An important fact used in the proof above is that the coloring is
A([k]<7, [k]<7), as opposed to just 3([k]<7,[k]<7). We ask whether
these more general sets are Ramsey:

Question 2.2. Let 7 < & be infinite cardinals. Is every X([x]<7, [k]<7)
set Ramsey? In particular, is every X([w;]?, [wi]') set Ramsey? If x is
a measurable cardinal, is every 2([x]“, [k]') set Ramsey?

In the conclusion of the previous theorem, H satisfies |k — H| < .

This allows us to simultaneously homogenize < k sets that are all
A([k]=, [K]7).

3. ALL X([k]?, [k]<") SETS ARE RAMSEY IFF Kk IS WEAKLY COMPACT

If % is not a weakly compact cardinal, then there is a coloring of []?
such that there is no H € [k]" all of whose pairs are the same color.
The collection X([x]?, [x]<*) is fine enough to allow the following:

Observation 3.1. For each pair {a1,as} € [k]?, there is a ([x]?, [£]<")-
pattern (A, B) such that a set X € [k]® matches (A, B) iff its first two
elements are a; and as.

This allows us to color a set X € [k]" based on its first two elements.

Proposition 3.2. Let k be an infinite cardinal that is not weakly com-
pact. Then there is a set in A([k)?, [k]<") that is not Ramsey.

Proof. Since & is not weakly compact, fix a coloring ¢ : [k]* — 2 such
that there is no H € [k)? satisfying |c“[H]?| = 1. Using the observation
above, let S € A([x]?, []<") be the unique subset of [x]* such that for
each X € [k]", we have X € S iff ¢({a1,a2}) = 1, where ay, as are the
first two elements of X. To see that S is indeed A([x]?, [k]<"), consider
the first two elements ay,ay of X. If ¢({a,a2}) = 1, then there is a
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([]?, [<]=")-pattern which witnesses that X € S. If ¢({a1,as}) = 0,
then there is a ([x]?, [x]<")-pattern which witnesses that X ¢ S.

One can see that given any H € [k]", there are X, Xy € [H]" such
that X; € S and X3 € S. Hence, S is not Ramsey. O

On the other hand, we will show that if x is weakly compact, then
every %([k]?, [k]<") set is Ramsey. We will use the following shrinking
procedure, which we isolate here for clarity.

In the following setup, we do not actually need each A € [X]™ to
have an associated B4. All we need is that for each X’ € [X]*, there
is some « < k such that A := X’ N« has an associated B4. However,
we will not need this generality.

Definition 3.3. Let X € [k]" and Q be a set of patterns. Fix n € w.
Suppose for each A € [X|" there is a set B4 such that (A4, B4) € Q.
We say that X is fast for A — By iff for each A € [X]", the only
elements of By N X are < sup A.

Lemma 3.4. Let X,Q.,n be as in the definition above, where each
A € [X]" has an associated By. Suppose X is fast for A By. Then
every X' € [X]* matches some pattern in Q.

Proof. Consider any X' € [X]*. Let A € [X']" be the first n elements
of X’. Consider the set B4 N X’. The only elements of B4 N X are
< sup A, so therefore the only elements of ByNX" are < sup A. On the
other hand, the only elements of X’ that are < sup A are the elements
of A themselves, and we have that B4 N A = (. Thus, ByN X' =0,
which shows that X’ matches (A, By). O

To produce an X’ € [X]" that is fast for A — By, we shrink X by
subtracting the final parts of the By’s from X.

Lemma 3.5. Let X € []", n € w, and Q be a set of (|k|", [k]<F)-
patterns. Assume that each A € [X]" has an associated Ba such that
(A, Ba) € Q. Then there is some X' € [ X]* that is fast for A Ba.

Proof. Fix a function f : kK — k such that for each o and A € [a]",
sup(B4) < f(a). Thin down X to produce an X’ that satisfies f(A) <
y for all A € [X']" and y € X' such that A < y. This works. O

Here is the promised result.

Proposition 3.6. Let k be a weakly compact cardinal. Then every
S([k)%, [k]<F) set is Ramsey.

Proof. Fix § C [x]* in 3([x]?, [£]<F). Let Q be a set of ([x]?, [k]<")-
patterns which generate S. For each A € [k]?, if there is some B € [k]<"
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such that (A, B) € Q, then let B4 be some such B. Let ¢ : [k]* — 2
be the following coloring:

c(A) = {1 if (A, B) € Q for some B,

0 otherwise.

Since k is weakly compact, let H € [k]® be homogeneous for ¢. That
is, all pairs from H are assigned the same color by c. If ¢“[H]? = {0},
then no subset of H can match any pattern from Q, so we are done.
If c“[H]? = {1}, then each A € [H]? has an associated B,. Apply
Lemma to get a set H' € [H|" that is fast for A — By. By
Lemma [3.4] each X € [H']" matches a pattern in Q. O

If k is a weakly compact cardinal, then we have in fact that for every
n € w, A < K, and d : [k]" — A, there is some H € [k]" satisfying
|d“[H]"| = 1. Thus, the argument from the proposition above yields
the following. It implies, in particular, that if x is weakly compact,
then every set in 3([k]", [k]<") for n € w is Ramsey.

Proposition 3.7. Let v be weakly compact and let 1 < X\ < k. Let
c:[K]" = (A+1) be such that for each a < X\, ¢} () € E([/i]  [R]<F).
Then c is Ramsey.

Proof. Note that we make no requirements on the complexity of ¢=1()\).
For each oo < A, let Q,, be the set of ([k]™, [k]<")-patterns which gen-
erate ¢ !(a). For each A € [k]", if there is some B € [k]<* such that
(A, B) € Q, for some «, then let B4 be some such B. Note that if
(A, By) € Qq, and (A, By) € Q,,, then a1 = as. Let d: [k]" — (A +1)
be the following coloring;:

d(A) = a if (A,E) € Q, for some B,
A otherwise.

Since k is weakly compact, let H € [k]* be such that |[d“[H]|"| = 1.

If d“[H|™ = {\}, then consider any X € [H]". For each A € [X]",
there is no B such that (A, B) € Q, for some o < . Hence, X is not
in any ¢ !(a) for < A\. Thus, X € ¢ !(\). This shows that H is
homogeneous for c.

The other case is that d“[H]|" = {a} for some fixed @ < A. That
is, for each A € [H]", (A4, B4) € Q,. Apply Lemma [3.5] to get a set
H' € [H]" that is fast for A — By. By Lemma [3.4] each X € [H']®
matches a pattern in Q. O
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4. ALL X([k]<¥, [k]<") SETS ARE RAMSEY IF k IS RAMSEY

The results in this section are analogous to those in the previous
section, so we will only sketch the proofs. Recall that s is a Ramsey
cardinal iff given any ¢ : []<% — 2, there is some H € [k]" such that for
all n € w, [c“[H]"| = 1. The following is analogous to Observation [3.1}

Observation 4.1. For A € [k]", there is a ([x]", [¢]<")-pattern (A, B)
such that a set X € [k]" matches (A, B) iff its first n elements are the
elements of A.

We would like to say that if s is not a Ramsey cardinal, then there
is some A([k]<“, [k]<") set that is not Ramsey. However, we know only
the following assertion to be true:

Proposition 4.2. Let k be an infinite cardinal that is not Ramsey.
Then there are S,, € A([k]™, [k]™F) for n < w such that there is no
H € [k]® homogeneous for all S,,.

Proof. Let ¢ : [k]¥ — 2 witness that x is not Ramsey. Using the
observation above, for each n € w, define S, so that given any X € [k]",
X € S iff the first n elements of X are colored 1 by ¢. If H € [k]" is
a set which is homogeneous for each S, then |c“[H]"| =1 for each n,
which is a contradiction. U

The following is a straightforward modification of Proposition [3.6}

Proposition 4.3. Let k be a Ramsey cardinal. Then every X([k]<%, [k]<")
set 1s Ramsey.

Proof. Fix § C [r]" in X([r]<¥, [k]<F). Let Q be the set of patterns
which generate S. For each A € [x]<¥, if there is some B € [k]|<" such
that (A, B) € Q, then let B4 be some such B. For each n € w, let
¢n : [K]™ — 2 be the following coloring:

1 if (A,B fi B
() = if (A, ‘)EQ or some B,
0 otherwise.

Since « is a Ramsey cardinal, let H € [k]® simultaneously homogenize
each ¢,.

There are two cases. The first case is that for all n € w, ¢, “[H]" =
{0}. When this happens, no X € [H]" can match any pattern (A4, B) €
Q, so H is homogeneous for S.

The other case is that there is some fixed n € w such that ¢, “[H]" =
{1}. Each A € [H|" has an associated B4. Apply Lemma [3.5to get a
set H' € [H]" that is fast for A — By4. By Lemma [3.4] each X € [H']
matches a pattern in Q. O
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If k is a Ramsey cardinal, then for any cardinal A < &k, for any
coloring d : [k]<“ — A, there is set H € [k]" such that for all n < w,
|d“[H]"| = 1. This gives us the following:

Proposition 4.4. Let k be Ramsey and let 1 < X\ < k. Let c¢: [k]" —
(A+ 1) be such that for each a < X, ¢ () € S([k]<%, [£]<F). Then c
1s Ramsey.

Proof. The proof is analogous to Proposition [3.7} For each a < A, let
Q,, be the set of patterns which generate ¢™'(a). We let d : [5]<“ —
(A+1) be such that d(A) := a/if (A, B) € Q, for some B, and d(A) := A
otherwise. Note that d is well-defined. Since x is Ramsey, let H € [k]*
be such that |[d“[H]"| =1 for all n € w.

There are two cases. The first case is that d“[H]" = {A} for all n.
In this case, it can be argued that each X € [H]* is in d~'()\). The
other case is that d“[H]" = {a} for some fixed n < w and a < A. In
this case, H can be shrunk as before to produce H' € [H|* with the
property that each X € [H']" is in ¢ !(a). O

5. ALL X([k]<¥,P(k) —U) SETS ARE RAMSEY IF U IS A
k-COMPLETE ULTRAFILTER

So far, we have said little about patterns (A, B) where |B| = k. In
this section, we will show that when k is a measurable cardinal and
when we fix a k-complete ultrafilter on k, sets B not in the ultrafilter
are small enough to be used in patterns (A, B) that will still generate
Ramsey sets. Recall that an ultrafilter U is x-complete iff it is closed
under intersections of size < k. An ultrafilter on x is normal iff it is
r-complete and moreover is closed under diagonal intersections.

Theorem 5.1. Let k be a measurable cardinal and let U be a nor-
mal ultrafilter on k. Then every X([x]<“, P(k) —U) set is Ramsey, as
witnessed by a set H € U.

Proof. Fix 8 in X([k]<%, P(k)—U), and let Q be the set of ([k]<“, P(k)—
U)-patterns which generates it. For each A € [k]<¥, let Cy € P(k) —U
be some set B such that (A4, B) € Q if such a B exists, and let Cy = ()
otherwise.

For each o < R, let Y, = ([{k —C4 : max A = a} € U. Let Y be the
diagonal intersection of these Y,'s: Y = {8 : 8 € [,.3 Yo}, which is in
U because U is normal. Suppose temporarily that A € [Y]|<“, y € Y,
and A < y. Let « = max A, so a < y. Since y € Y, by definition we
have y € Y,. This implies that y € K — C4. Hence, y & Cjy.

Now let ¢ : [Y]<¥ — 2 be the coloring given by ¢(A) = 1if (A,C,) €
Q, and ¢(A) = 0 otherwise. Since Y € U and U is k-complete, there



RAMSEY THEORY ON GENERALIZED BAIRE SPACE 9

is some H € [Y]" in U that is homogeneous for c. If ¢“[H|" = {0} for
all n, then no X € [H]* matches a pattern in Q, and we are done. If
c“[H]™ = {1} for some fixed n, then consider any X € [H]". Let A be
the first n elements of X. By what we said above, any element of Y
greater than max A is not in C'4. Hence, every element of X greater
than max A is not in C4. This shows that X N C4 = . Thus, X
matches the pattern (A,Cy) € Q. O

If U is not a normal ultrafilter in the above theorem but only a k-
complete ultrafilter, then we have the weaker conclusion that H € [k]".
This can be proved by modifying Lemma [3.5

6. NoT ALL A([k])“, [k]<") SETS ARE RAMSEY IF Kk > w

It is well known that assuming the Axiom of Choice, not every subset
of [w]* is Ramsey. Since [w]* = A([w]?, [w]=*¥), we have that not every
A([w]?, [w]=*) set is Ramsey. In this section, we will show that the
argument for [w]¥ shows that when xk > w, not every 3([k], [k]<F) set
is Ramsey.

Observation 6.1. Let k > w be a cardinal. For A € [k]“, there is a
([k]“, [£]<")-pattern (A, B) such that a set X € [k]" matches (A, B) iff
the first w elements of X are the elements of A.

Given sets A, B € [k]", recall that AAB is the set (A— B)U(B—A).

This next proposition uses the Axiom of Choice.

Proposition 6.2. Let k > w be a cardinal. There is a A([x]“, [£]<")

set that is not Ramsey.

Proof. Given a set X € [k]", let X’ be the set of the first w elements
of X. Given X, X» € [k]", we write X; = X iff 1) sup X| = sup X},
and 2) |X]AX)| < w. Using the Axiom of Choice, we may pick a
representative from each =-equivalence class. Let S C [k]* be defined
such that for each X € [k]", X € S iff | X’AY”| is even, where Y is the
representative from X’s =-equivalence class. Now, given any X; € [k]",
there is some X3 € [X;]" such that X; € S iff Xy € S: to produce such
an X,, simply remove the first element from Xj. U

7. CONSTRUCTIBLE PATTERNS

We mentioned that, assuming the Axiom of Choice, there is a subset
of [w]¥ that is not Ramsey. However, if S C [w]“ is in L(R) and we
assume there are large cardinals in the universe, then & is Ramsey
[3]. With the same large cardinal assumptions, Martin showed [3] that
every S C [w]*" in L(R) is Ramsey from the point of view of L(R). In
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this section, we show results of a similar flavor: if the set of patterns Q
used to generate a set is not too complicated, then the set S generated
in the full universe must be Ramsey.

Recall that if 0% exists, then there is a proper class of indiscernibles
7 C Ord, called Silver indiscernibles, such that L is the Skolem hull of
Z. Given a cardinal k, let Z, refer to k N Z.

Lemma 7.1. Let A C T be in L. Then A is finite.

Proof. Given any countably infinite subset C' of Z and o € T satisfy-
ing supC' < a, 07 is the theory of L, with constant symbols for the
elements of C. If A is infinite, then within L we can define 0%, which
is impossible. O

We must now deal with the B components of our patterns.

Definition 7.2. Assume 0% exists. Let k > w be a cardinal. Let
B C kbein L. We call B bad iff Z, — B has size < k. We call B good
ifft 7, N B has size < k.

If B is bad, then no X € [Z,]" can match (A, B) for any A.

Lemma 7.3. Assume 0% exists. Let k > w be a cardinal. Let B C k
i L be not bad. Then B s good.

Proof. Since 0% exists, let g < ... < a; < k be indiscernibles such that
whenever 3; and [, are between two consecutive elements of

07 g, ..., O, R,

then 81 € BNZ iff f € BNZ. The set (o, k) NZ, is either a subset
of B or disjoint from B. It cannot be a subset of B because then we
would have that Z,, — B has size < k, meaning B is bad. So it must be
disjoint from B, and therefore B is good. O

We now have that if @ C L is a set of patterns and X € [Z.]"
matches some (A, B) € Q, then A is finite and B is good. Hence, the
(A, B) that we must consider are essentially ([x]<“, [£|<")-patterns:

However, this does not imply that the set S generated by Q is Ram-
sey. The problem is Observation|3.1], which in a more precise form gives
us that for each A € [k]?, there is some B € [k]<* such that (4, B) € L
and for any X € [k]", X matches (A, B) iff its first two elements are
the elements of A. This gives us the following:

Observation 7.4. Let x be an infinite cardinal that is not weakly
compact. Then there is a set Q@ C L of ([«]?, [x]<")-patterns such that
the set S C [k]" generated by Q is not Ramsey.
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A similar situation occurs when, more generally, s is not a Ramsey
cardinal. On the other hand, we have the following:

Proposition 7.5. Let kK > w be a Ramsey cardinal. Let Q C L be a
set of patterns. Then the set S C [k generated by Q is Ramsey.

Proof. Since k is a Ramsey cardinal, 0% exists. Consider Z,. Let
Q' C Q be the set of (A, B) € Q such that A is finite and B is good.
By the previous lemmas, for each X € [Z.]", we have X € S iff X is
in the set generated by @'. Thus, it suffices to find a set H € [Z,]"
that is homogeneous for the set generated by Q’. For each n € w, let
¢ o [K]™ = 2 be the coloring defined by ¢,(A) := 1 if (A4, B) € Q' for
some B, and ¢,(A) := 0 otherwise. Since x is Ramsey, let H € [Z,]"
homogenize each ¢,. If ¢, “[H|" = {0} for each n, then no X € [H]"
matches a pattern in @'. On the other hand, suppose ¢, “[H|" = {1}
for some fixed n. Then we may apply the usual shrinking procedure,
since each B under consideration is good, to produce H' € [H]® such
that every X € [H']® matches a pattern in Q'. O

Here is another way to ensure that the set generated by Q C L is
Ramsey:

Proposition 7.6. Assume 0% exists. Let k > w be a cardinal. Let
Q € L be a set of patterns. Then the set S C [k]" generated by Q is
Ramsey.

Proof. Suppose @ = p(dy, d1), where p is a Skolem term and &y, 4
are finite increasing sequences of elements of Z such that max(dy) <
k < min(d;). Let I = Z, N (max(dy), k). Let J € [I]* be such that
between any two elements of J there are infinitely many elements of I,
and there are infinitely many elements of I before the first element of
J. We will show that either [[]* NS =0 or [J]* C S.

Suppose there is some fixed X € [I|*"NS. Let (A, B) € Q be such
that X € [A; B]. Because A C X C I, by Lemma [7.1] A is finite. Since
B e L, let B= 7(50,51,52) where 7 is a Skolem term and G, A1, 3
are finite increasing sequences of elements of Z such that

max(fF,) < max(@) < min(f;) < max(f;) < x < min(53).

Assume that all elements of A occur in 51. Enumerate 51 in increasing
order as B = (8i : i < n). Let F C n be such that A= {8 :i € F}.
Now fix Y € [J]*. We must show that Y € §. That is, we must find
(A', B") € Q such that Y € [A’; B']. Let A’ be the first |F'| elements of
Y. Enumerate A’ as A’ = {+" € J : i € F}. We now must enlarge A’ to
get a set of size n. Let 4* € I for i € n — F be such that the sequence
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¥ = (v € I : i < n) is strictly increasing and "1 < min(Y — A4’).
This is possible because J is sparse enough. Now let B’ = 7'(50, 7, 5;)
It remains to show that (A’, B') € Q and Y € [A", B'].

Since (A, B) € Q, we have

({8 i€ F},7(Bo, B, B2)) € pldo,@).

By indiscernibility, we have

({’}/Z SRS F}77(607’7> 52)) € p(&()’&l)'
That is, (A, B') € Q.

Because X C I, there is some element of I N (57!, k) not in B.
So by indiscernibility, no element of I N (57!, «) is in B. Again by
indiscernibility, no element of I N (7"}, k) is in B’. However, Y — A’ C
IN(y" 1, k), because y" ! is < min(Y — A’). Because also A’'N B’ = 0,
we have that Y N B’ = (). This establishes that Y € [A’; B]. O

This next question is natural along our line of inquiry:

Question 7.7. Does it follow from large cardinals, or is it even con-
sistent with the Axiom of Choice, that for every set Q@ € L(R) of
([wi] =1, [wi]=“1)-patterns, the set generated by Q is Ramsey?
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