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DAN HATHAWAY

Abstract. We show that although the Galvin-Prikry Theorem
does not hold on generalized Baire space with the standard topol-
ogy, there are similar theorems which do hold on generalized Baire
space with certain coarser topologies.

1. Introduction and Some Definitions

Given ordinals κ and γ, [κ]γ is the set of all subsets of κ of order
type γ, and [κ]<γ is the set of all subsets of κ of order type < γ. In
this paper, for an infinite cardinal κ, we will consider colorings of [κ]κ

as opposed to [κ]µ for some µ < κ. Given a function c : X → Y and
a set Z ⊆ X, c“Z is the image of Z under c. We use the convention
that natural numbers are ordinals, so for example 2 = {0, 1}. We will
sometimes use the notation (α, β) for the set of all ordinals γ such that
α < γ < β, and (α, β] for the set (α, β) ∪ {β}, etc.

Definition 1.1. Let κ be a cardinal. Given sets A,B ⊆ κ, a pair
(A,B) such that A ∩ B = ∅ is called a pattern. Given A,B ⊆ P(κ),
an (A,B)-pattern is a pair (A,B) such that A ∈ A and B ∈ B. A
set X ∈ [κ]κ matches the pattern (A,B) iff A ⊆ X and B ∩ X = ∅.
Finally, [A;B] is the set of all X ∈ [κ]κ which match (A,B).

Definition 1.2. Fix A,B ⊆ P(κ). Σ(A,B) is the collection of all
S ⊆ [κ]κ that are unions of sets of the form [A;B] for (A,B) ∈ A×B.
That is, sets S for which there exists a set Q of (A,B)-patterns such
that S = {X ∈ [κ]κ : X matches some (A,B) ∈ Q}. We say that Q
generates S. ∆(A,B) is the collection of all S ⊆ [κ]κ such that S and
[κ]κ − S are in Σ(A,B).

Hence, S ∈ Σ(A,B) iff there is a collection of patterns {(Ai, Bi) ∈
A × B : i ∈ I} such that for each X ∈ [κ]κ, X ∈ S iff (∃i ∈ I)
X matches (Ai, Bi). Also, S ∈ ∆(A,B) iff there are sets Q+,Q− of
(A,B)-patterns such that for each X ∈ [κ]κ, X ∈ S iff X matches some
(A,B) ∈ Q+, and X 6∈ S iff X matches some (A,B) ∈ Q−.

If A and B are closed under finite unions, then Σ(A,B) is a topology:
it is closed under finite intersections and arbitrary unions, and has both
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∅ and [κ]κ as elements. If Σ(A,B) is a topology, then ∆(A,B) is the
collection of clopen sets in this topology. Σ([κ]<κ, [κ]<κ) is the standard
topology on generalized Baire space of height κ.

Definition 1.3. A collection S ∈ [κ]κ is Ramsey as witnessed by H ∈
[κ]κ iff one of the following holds:

1) (∀X ∈ [H]κ)X ∈ S;
2) (∀X ∈ [H]κ)X /∈ S.

We also say that H is homogeneous for S. More generally, we say that
c : [κ]κ → λ is Ramsey just in case there is a set H ∈ [κ]κ such that
|c“[H]κ| = 1, and we say that H is homogeneous for c.

One of the earliest results in this area is the Galvin-Prikry The-
orem [2], which says that not only is every open set in the topology
Σ([ω]<ω, [ω]<ω) Ramsey, but every Borel set in this topology is Ramsey
as well. Next, Silver [6] showed that every analytic set in the topol-
ogy Σ([ω]<ω, [ω]<ω) is Ramsey. Ellentuck generalized this further [1]
by showing that every analytic S in the topology Σ([ω]<ω, [ω]≤ω) is
Ramsey. Assuming the Axiom of Choice, there exists a set S ⊆ [ω]ω

that is not Ramsey. Moreover, Silver [6] showed that it is consistent
with ZFC that there is a logically simple, in fact ∆1

2, set S ⊆ [ω]ω that
is not Ramsey. On the other hand [3], if we assume the existence of
large cardinals, then every S ⊆ [ω]ω that is in L(R) is Ramsey, where
L(R) is the smallest model of ZF that contains R and all the ordinals.
Let us also mention that Shelah [5] has shown that if κ is a Ramsey
cardinal and c : [κ]ω → 2 is Borel in a certain topology, then there is a
set H ∈ [κ]κ such that |c“[H]ω| = 1.

It is natural to ask what sets S ⊆ [κ]κ for κ > ω are Ramsey. The
standard argument that there is a set S ⊆ [ω]ω that is not Ramsey
shows that when κ > ω, there is a set S ⊆ [κ]κ in ∆([κ]ω, [κ]<κ)
that is not Ramsey (see Proposition 6.2). In Section 2 we make the
main contribution of this paper and show that when γ < κ, then all
∆([κ]<γ, [κ]<γ) sets are Ramsey. It is open whether ∆ can be replaced
with Σ.

Then, when we increase the B component of the patterns to include
all size < κ sets, we must simultaneously decrease the A component.
In Section 3, we show that the following are equivalent for a cardinal
κ > ω:

• κ is weakly compact;
• All ∆([κ]2, [κ]<κ) sets are Ramsey;
• All Σ([κ]2, [κ]<κ) sets are Ramsey;
• (∀n ∈ ω) all Σ([κ]n, [κ]<κ) sets are Ramsey;
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The main technique of the section is a shrinking procedure. Here is the
basic version: fix a set of ([κ]2, [κ]<κ)-patterns Q and a set H ∈ [κ]κ

such that for each A ∈ [H]2, there is some BA such that (A,BA) ∈ Q.
Then there is some H ′ ∈ [H]κ such that for all distinct a1, a2 ∈ H ′,
the first element of H ′ greater than a1 and a2 is also greater than all
elements of B{a1,a2}. Each X ∈ [H ′]κ will match (A,BA), where A is
the set of the first two elements of X. We will modify this procedure
in the following section.

In Section 4, we strengthen the A component of the patterns and
show that if κ is a Ramsey cardinal, then all Σ([κ]<ω, [κ]<κ) sets are
Ramsey. In Section 5, we strengthen the B component of the patterns
and show that if κ is a measurable cardinal with a κ-complete ultrafilter
U , then all Σ([κ]<ω,P(κ) − U) sets are Ramsey. Finally, in Section 7
we consider sets of patterns that are within L, assuming 0# exists.

2. All ∆([κ]<γ, [κ]<γ) sets are Ramsey if γ < κ

Temporarily fix cardinals γ < κ. We call Σ([κ]<γ, [κ]<γ) the <γ-
box topology ; it is indeed a topology, and basic open sets are “boxes”
determined by specifying membership requirements for <γ elements of
κ. We have that

Σ([κ]<γ, [κ]<γ) ⊆ Σ([κ]<κ, [κ]<κ).

It turns out that because Σ([κ]<γ, [κ]<γ) is so coarse, all ∆([κ]<γ, [κ]<γ)
sets are Ramsey. This follows from the next theorem:

Theorem 2.1. Let γ < κ be infinite cardinals. Let c : [κ]κ → γ
be continuous, where [κ]κ is given the topology Σ([κ]<γ, [κ]<γ) and γ
is given the discrete topology. Then there is some H ∈ [κ]κ that is
homogeneous for c, where |κ − H| ≤ γ. If γ is a regular cardinal, we
can get an H such that |κ−H| < γ.

Proof. We will find a set B ∈ [κ]≤γ such that c � [0;B] is constant. If γ
is regular, we will have |B| < γ. Let 〈cα : α < γ〉 be an enumeration of
γ where each ordinal is listed γ times. We will construct Aα, Bα ∈ [κ]<γ

for α < γ such that Aα ∩Bα = ∅ and the sets Aα are pairwise disjoint.
At stage α < γ, let B =

⋃
β<αAβ. Note that |B| ≤ γ, and if γ is

regular, then |B| < γ. There are two possibilities.
Case 1. If c � [∅;B] is constantly cα, then terminate the construction.
Case 2. Fix some X ∈ [∅;B] such that c(X) 6= cα. Let dα = c(X).

Since c is continuous, fix disjoint Aα, Bα such that X ∈ [Aα;Bα] and
c � [Aα;Bα] is constantly dα. Note that since Aα ⊆ X and X ∩B = ∅,
Aα is disjoint from each Aβ for β < α.
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We claim that the construction must terminate before stage γ. Sup-
pose that this is not the case. Fix X ∈ [∅;

⋃
α<γ Bα]. Fix disjoint

A,B ∈ [κ]<γ such that X ∈ [A;B] and c � [A;B] is constantly c(X).
Only < γ many Aα’s can intersect B, because the Aα’s are pairwise
disjoint. Fix α < γ such that Aα is disjoint from B and cα = c(X).
Since A ⊆ X, A is disjoint from Bα. We now have that A and Aα are
each disjoint from B and Bα. Thus, (A ∪ Aα, B ∪ Bα) is a pattern.
We now have that c is constantly c(X) on [A;B] and it is constantly
dα 6= cα = c(X) on [Aα;Bα]. But since

[A ∪ Aα;B ∪Bα] ⊆ [A;B] ∩ [Aα;Bα],

this is impossible. �

An important fact used in the proof above is that the coloring is
∆([κ]<γ, [κ]<γ), as opposed to just Σ([κ]<γ, [κ]<γ). We ask whether
these more general sets are Ramsey:

Question 2.2. Let γ < κ be infinite cardinals. Is every Σ([κ]<γ, [κ]<γ)
set Ramsey? In particular, is every Σ([ω1]

2, [ω1]
1) set Ramsey? If κ is

a measurable cardinal, is every Σ([κ]ω, [κ]1) set Ramsey?

In the conclusion of the previous theorem, H satisfies |κ −H| ≤ γ.
This allows us to simultaneously homogenize < κ sets that are all
∆([κ]<γ, [κ]<γ).

3. All Σ([κ]2, [κ]<κ) sets are Ramsey iff κ is weakly compact

If κ is not a weakly compact cardinal, then there is a coloring of [κ]2

such that there is no H ∈ [κ]κ all of whose pairs are the same color.
The collection Σ([κ]2, [κ]<κ) is fine enough to allow the following:

Observation 3.1. For each pair {a1, a2} ∈ [κ]2, there is a ([κ]2, [κ]<κ)-
pattern (A,B) such that a set X ∈ [κ]κ matches (A,B) iff its first two
elements are a1 and a2.

This allows us to color a set X ∈ [κ]κ based on its first two elements.

Proposition 3.2. Let κ be an infinite cardinal that is not weakly com-
pact. Then there is a set in ∆([κ]2, [κ]<κ) that is not Ramsey.

Proof. Since κ is not weakly compact, fix a coloring c : [κ]2 → 2 such
that there is no H ∈ [κ]2 satisfying |c“[H]2| = 1. Using the observation
above, let S ∈ ∆([κ]2, [κ]<κ) be the unique subset of [κ]κ such that for
each X ∈ [κ]κ, we have X ∈ S iff c({a1, a2}) = 1, where a1, a2 are the
first two elements of X. To see that S is indeed ∆([κ]2, [κ]<κ), consider
the first two elements a1, a2 of X. If c({a1, a2}) = 1, then there is a
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([κ]2, [κ]<κ)-pattern which witnesses that X ∈ S. If c({a1, a2}) = 0,
then there is a ([κ]2, [κ]<κ)-pattern which witnesses that X 6∈ S.

One can see that given any H ∈ [κ]κ, there are X1, X2 ∈ [H]κ such
that X1 ∈ S and X2 6∈ S. Hence, S is not Ramsey. �

On the other hand, we will show that if κ is weakly compact, then
every Σ([κ]2, [κ]<κ) set is Ramsey. We will use the following shrinking
procedure, which we isolate here for clarity.

In the following setup, we do not actually need each A ∈ [X]n to
have an associated BA. All we need is that for each X ′ ∈ [X]κ, there
is some α < κ such that A := X ′ ∩ α has an associated BA. However,
we will not need this generality.

Definition 3.3. Let X ∈ [κ]κ and Q be a set of patterns. Fix n ∈ ω.
Suppose for each A ∈ [X]n there is a set BA such that (A,BA) ∈ Q.
We say that X is fast for A 7→ BA iff for each A ∈ [X]n, the only
elements of BA ∩X are < supA.

Lemma 3.4. Let X,Q, n be as in the definition above, where each
A ∈ [X]n has an associated BA. Suppose X is fast for A 7→ BA. Then
every X ′ ∈ [X]κ matches some pattern in Q.

Proof. Consider any X ′ ∈ [X]κ. Let A ∈ [X ′]n be the first n elements
of X ′. Consider the set BA ∩ X ′. The only elements of BA ∩ X are
< supA, so therefore the only elements of BA∩X ′ are < supA. On the
other hand, the only elements of X ′ that are < supA are the elements
of A themselves, and we have that BA ∩ A = ∅. Thus, BA ∩ X ′ = ∅,
which shows that X ′ matches (A,BA). �

To produce an X ′ ∈ [X]κ that is fast for A 7→ BA, we shrink X by
subtracting the final parts of the BA’s from X.

Lemma 3.5. Let X ∈ [κ]κ, n ∈ ω, and Q be a set of ([κ]n, [κ]<κ)-
patterns. Assume that each A ∈ [X]n has an associated BA such that
(A,BA) ∈ Q. Then there is some X ′ ∈ [X]κ that is fast for A 7→ BA.

Proof. Fix a function f : κ → κ such that for each α and A ∈ [α]n,
sup(BA) < f(α). Thin down X to produce an X ′ that satisfies f(A) <
y for all A ∈ [X ′]n and y ∈ X ′ such that A < y. This works. �

Here is the promised result.

Proposition 3.6. Let κ be a weakly compact cardinal. Then every
Σ([κ]2, [κ]<κ) set is Ramsey.

Proof. Fix S ⊆ [κ]κ in Σ([κ]2, [κ]<κ). Let Q be a set of ([κ]2, [κ]<κ)-
patterns which generate S. For each A ∈ [κ]2, if there is some B ∈ [κ]<κ
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such that (A,B) ∈ Q, then let BA be some such B. Let c : [κ]2 → 2
be the following coloring:

c(A) :=

{
1 if (A,B) ∈ Q for some B,

0 otherwise.

Since κ is weakly compact, let H ∈ [κ]κ be homogeneous for c. That
is, all pairs from H are assigned the same color by c. If c“[H]2 = {0},
then no subset of H can match any pattern from Q, so we are done.

If c“[H]2 = {1}, then each A ∈ [H]2 has an associated BA. Apply
Lemma 3.5 to get a set H ′ ∈ [H]κ that is fast for A 7→ BA. By
Lemma 3.4, each X ∈ [H ′]κ matches a pattern in Q. �

If κ is a weakly compact cardinal, then we have in fact that for every
n ∈ ω, λ < κ, and d : [κ]n → λ, there is some H ∈ [κ]κ satisfying
|d“[H]n| = 1. Thus, the argument from the proposition above yields
the following. It implies, in particular, that if κ is weakly compact,
then every set in Σ([κ]n, [κ]<κ) for n ∈ ω is Ramsey.

Proposition 3.7. Let κ be weakly compact and let 1 ≤ λ < κ. Let
c : [κ]κ → (λ+ 1) be such that for each α < λ, c−1(α) ∈ Σ([κ]n, [κ]<κ).
Then c is Ramsey.

Proof. Note that we make no requirements on the complexity of c−1(λ).
For each α < λ, let Qα be the set of ([κ]n, [κ]<κ)-patterns which gen-
erate c−1(α). For each A ∈ [κ]n, if there is some B ∈ [κ]<κ such that
(A,B) ∈ Qα for some α, then let BA be some such B. Note that if
(A,B1) ∈ Qα1 and (A,B2) ∈ Qα2 , then α1 = α2. Let d : [κ]n → (λ+ 1)
be the following coloring:

d(A) :=

{
α if (A,B) ∈ Qα for some B,

λ otherwise.

Since κ is weakly compact, let H ∈ [κ]κ be such that |d“[H]n| = 1.
If d“[H]n = {λ}, then consider any X ∈ [H]κ. For each A ∈ [X]n,

there is no B such that (A,B) ∈ Qα for some α < λ. Hence, X is not
in any c−1(α) for α < λ. Thus, X ∈ c−1(λ). This shows that H is
homogeneous for c.

The other case is that d“[H]n = {α} for some fixed α < λ. That
is, for each A ∈ [H]n, (A,BA) ∈ Qα. Apply Lemma 3.5 to get a set
H ′ ∈ [H]κ that is fast for A 7→ BA. By Lemma 3.4, each X ∈ [H ′]κ

matches a pattern in Q. �



RAMSEY THEORY ON GENERALIZED BAIRE SPACE 7

4. All Σ([κ]<ω, [κ]<κ) sets are Ramsey if κ is Ramsey

The results in this section are analogous to those in the previous
section, so we will only sketch the proofs. Recall that κ is a Ramsey
cardinal iff given any c : [κ]<ω → 2, there is some H ∈ [κ]κ such that for
all n ∈ ω, |c“[H]n| = 1. The following is analogous to Observation 3.1:

Observation 4.1. For A ∈ [κ]n, there is a ([κ]n, [κ]<κ)-pattern (A,B)
such that a set X ∈ [κ]κ matches (A,B) iff its first n elements are the
elements of A.

We would like to say that if κ is not a Ramsey cardinal, then there
is some ∆([κ]<ω, [κ]<κ) set that is not Ramsey. However, we know only
the following assertion to be true:

Proposition 4.2. Let κ be an infinite cardinal that is not Ramsey.
Then there are Sn ∈ ∆([κ]n, [κ]<κ) for n < ω such that there is no
H ∈ [κ]κ homogeneous for all Sn.

Proof. Let c : [κ]<ω → 2 witness that κ is not Ramsey. Using the
observation above, for each n ∈ ω, define Sn so that given any X ∈ [κ]κ,
X ∈ S iff the first n elements of X are colored 1 by c. If H ∈ [κ]κ is
a set which is homogeneous for each Sn, then |c“[H]n| = 1 for each n,
which is a contradiction. �

The following is a straightforward modification of Proposition 3.6:

Proposition 4.3. Let κ be a Ramsey cardinal. Then every Σ([κ]<ω, [κ]<κ)
set is Ramsey.

Proof. Fix S ⊆ [κ]κ in Σ([κ]<ω, [κ]<κ). Let Q be the set of patterns
which generate S. For each A ∈ [κ]<ω, if there is some B ∈ [κ]<κ such
that (A,B) ∈ Q, then let BA be some such B. For each n ∈ ω, let
cn : [κ]n → 2 be the following coloring:

cn(A) :=

{
1 if (A,B) ∈ Q for some B,

0 otherwise.

Since κ is a Ramsey cardinal, let H ∈ [κ]κ simultaneously homogenize
each cn.

There are two cases. The first case is that for all n ∈ ω, cn“[H]n =
{0}. When this happens, no X ∈ [H]κ can match any pattern (A,B) ∈
Q, so H is homogeneous for S.

The other case is that there is some fixed n ∈ ω such that cn“[H]n =
{1}. Each A ∈ [H]n has an associated BA. Apply Lemma 3.5 to get a
set H ′ ∈ [H]κ that is fast for A 7→ BA. By Lemma 3.4, each X ∈ [H ′]
matches a pattern in Q. �
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If κ is a Ramsey cardinal, then for any cardinal λ < κ, for any
coloring d : [κ]<ω → λ, there is set H ∈ [κ]κ such that for all n < ω,
|d“[H]n| = 1. This gives us the following:

Proposition 4.4. Let κ be Ramsey and let 1 ≤ λ < κ. Let c : [κ]κ →
(λ + 1) be such that for each α < λ, c−1(α) ∈ Σ([κ]<ω, [κ]<κ). Then c
is Ramsey.

Proof. The proof is analogous to Proposition 3.7. For each α < λ, let
Qα be the set of patterns which generate c−1(α). We let d : [κ]<ω →
(λ+1) be such that d(A) := α if (A,B) ∈ Qα for some B, and d(A) := λ
otherwise. Note that d is well-defined. Since κ is Ramsey, let H ∈ [κ]κ

be such that |d“[H]n| = 1 for all n ∈ ω.
There are two cases. The first case is that d“[H]n = {λ} for all n.

In this case, it can be argued that each X ∈ [H]κ is in d−1(λ). The
other case is that d“[H]n = {α} for some fixed n < ω and α < λ. In
this case, H can be shrunk as before to produce H ′ ∈ [H]κ with the
property that each X ∈ [H ′]κ is in c−1(α). �

5. All Σ([κ]<ω,P(κ)− U) sets are Ramsey if U is a
κ-complete ultrafilter

So far, we have said little about patterns (A,B) where |B| = κ. In
this section, we will show that when κ is a measurable cardinal and
when we fix a κ-complete ultrafilter on κ, sets B not in the ultrafilter
are small enough to be used in patterns (A,B) that will still generate
Ramsey sets. Recall that an ultrafilter U is κ-complete iff it is closed
under intersections of size < κ. An ultrafilter on κ is normal iff it is
κ-complete and moreover is closed under diagonal intersections.

Theorem 5.1. Let κ be a measurable cardinal and let U be a nor-
mal ultrafilter on κ. Then every Σ([κ]<ω,P(κ)− U) set is Ramsey, as
witnessed by a set H ∈ U .

Proof. Fix S in Σ([κ]<ω,P(κ)−U), and letQ be the set of ([κ]<ω,P(κ)−
U)-patterns which generates it. For each A ∈ [κ]<ω, let CA ∈ P(κ)−U
be some set B such that (A,B) ∈ Q if such a B exists, and let CA = ∅
otherwise.

For each α < κ, let Yα =
⋂
{κ−CA : maxA = α} ∈ U . Let Y be the

diagonal intersection of these Yα’s: Y = {β : β ∈
⋂
α<β Yα}, which is in

U because U is normal. Suppose temporarily that A ∈ [Y ]<ω, y ∈ Y ,
and A < y. Let α = maxA, so α < y. Since y ∈ Y , by definition we
have y ∈ Yα. This implies that y ∈ κ− CA. Hence, y 6∈ CA.

Now let c : [Y ]<ω → 2 be the coloring given by c(A) = 1 if (A,CA) ∈
Q, and c(A) = 0 otherwise. Since Y ∈ U and U is κ-complete, there
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is some H ∈ [Y ]κ in U that is homogeneous for c. If c“[H]n = {0} for
all n, then no X ∈ [H]κ matches a pattern in Q, and we are done. If
c“[H]n = {1} for some fixed n, then consider any X ∈ [H]κ. Let A be
the first n elements of X. By what we said above, any element of Y
greater than maxA is not in CA. Hence, every element of X greater
than maxA is not in CA. This shows that X ∩ CA = ∅. Thus, X
matches the pattern (A,CA) ∈ Q. �

If U is not a normal ultrafilter in the above theorem but only a κ-
complete ultrafilter, then we have the weaker conclusion that H ∈ [κ]κ.
This can be proved by modifying Lemma 3.5.

6. Not all ∆([κ]ω, [κ]<κ) sets are Ramsey if κ > ω

It is well known that assuming the Axiom of Choice, not every subset
of [ω]ω is Ramsey. Since [ω]ω = ∆([ω]ω, [ω]≤ω), we have that not every
∆([ω]ω, [ω]≤ω) set is Ramsey. In this section, we will show that the
argument for [ω]ω shows that when κ > ω, not every Σ([κ]ω, [κ]<κ) set
is Ramsey.

Observation 6.1. Let κ > ω be a cardinal. For A ∈ [κ]ω, there is a
([κ]ω, [κ]<κ)-pattern (A,B) such that a set X ∈ [κ]κ matches (A,B) iff
the first ω elements of X are the elements of A.

Given sets A,B ∈ [κ]κ, recall that A∆B is the set (A−B)∪ (B−A).
This next proposition uses the Axiom of Choice.

Proposition 6.2. Let κ > ω be a cardinal. There is a ∆([κ]ω, [κ]<κ)
set that is not Ramsey.

Proof. Given a set X ∈ [κ]κ, let X ′ be the set of the first ω elements
of X. Given X1, X2 ∈ [κ]κ, we write X1 ≡ X2 iff 1) supX ′1 = supX ′2
and 2) |X ′1∆X ′2| < ω. Using the Axiom of Choice, we may pick a
representative from each ≡-equivalence class. Let S ⊆ [κ]κ be defined
such that for each X ∈ [κ]κ, X ∈ S iff |X ′∆Y ′| is even, where Y is the
representative from X’s ≡-equivalence class. Now, given any X1 ∈ [κ]κ,
there is some X2 ∈ [X1]

κ such that X1 ∈ S iff X2 6∈ S: to produce such
an X2, simply remove the first element from X1. �

7. Constructible Patterns

We mentioned that, assuming the Axiom of Choice, there is a subset
of [ω]ω that is not Ramsey. However, if S ⊆ [ω]ω is in L(R) and we
assume there are large cardinals in the universe, then S is Ramsey
[3]. With the same large cardinal assumptions, Martin showed [3] that
every S ⊆ [ω1]

ω1 in L(R) is Ramsey from the point of view of L(R). In
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this section, we show results of a similar flavor: if the set of patterns Q
used to generate a set is not too complicated, then the set S generated
in the full universe must be Ramsey.

Recall that if 0# exists, then there is a proper class of indiscernibles
I ⊆ Ord, called Silver indiscernibles, such that L is the Skolem hull of
I. Given a cardinal κ, let Iκ refer to κ ∩ I.

Lemma 7.1. Let A ⊆ I be in L. Then A is finite.

Proof. Given any countably infinite subset C of I and α ∈ I satisfy-
ing supC ≤ α, 0# is the theory of Lα with constant symbols for the
elements of C. If A is infinite, then within L we can define 0#, which
is impossible. �

We must now deal with the B components of our patterns.

Definition 7.2. Assume 0# exists. Let κ > ω be a cardinal. Let
B ⊆ κ be in L. We call B bad iff Iκ −B has size < κ. We call B good
iff Iκ ∩B has size < κ.

If B is bad, then no X ∈ [Iκ]κ can match (A,B) for any A.

Lemma 7.3. Assume 0# exists. Let κ > ω be a cardinal. Let B ⊆ κ
in L be not bad. Then B is good.

Proof. Since 0# exists, let α0 < ... < αl < κ be indiscernibles such that
whenever β1 and β2 are between two consecutive elements of

0, α0, ..., αl, κ,

then β1 ∈ B ∩ I iff β2 ∈ B ∩ I. The set (αl, κ) ∩ Iκ is either a subset
of B or disjoint from B. It cannot be a subset of B because then we
would have that Iκ−B has size < κ, meaning B is bad. So it must be
disjoint from B, and therefore B is good. �

We now have that if Q ⊆ L is a set of patterns and X ∈ [Iκ]κ
matches some (A,B) ∈ Q, then A is finite and B is good. Hence, the
(A,B) that we must consider are essentially ([κ]<ω, [κ]<κ)-patterns:

However, this does not imply that the set S generated by Q is Ram-
sey. The problem is Observation 3.1, which in a more precise form gives
us that for each A ∈ [κ]2, there is some B ∈ [κ]<κ such that (A,B) ∈ L
and for any X ∈ [κ]κ, X matches (A,B) iff its first two elements are
the elements of A. This gives us the following:

Observation 7.4. Let κ be an infinite cardinal that is not weakly
compact. Then there is a set Q ⊆ L of ([κ]2, [κ]<κ)-patterns such that
the set S ⊆ [κ]κ generated by Q is not Ramsey.
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A similar situation occurs when, more generally, κ is not a Ramsey
cardinal. On the other hand, we have the following:

Proposition 7.5. Let κ > ω be a Ramsey cardinal. Let Q ⊆ L be a
set of patterns. Then the set S ⊆ [κ]κ generated by Q is Ramsey.

Proof. Since κ is a Ramsey cardinal, 0# exists. Consider Iκ. Let
Q′ ⊆ Q be the set of (A,B) ∈ Q such that A is finite and B is good.
By the previous lemmas, for each X ∈ [Iκ]κ, we have X ∈ S iff X is
in the set generated by Q′. Thus, it suffices to find a set H ∈ [Iκ]κ
that is homogeneous for the set generated by Q′. For each n ∈ ω, let
cn : [κ]n → 2 be the coloring defined by cn(A) := 1 if (A,B) ∈ Q′ for
some B, and cn(A) := 0 otherwise. Since κ is Ramsey, let H ∈ [Iκ]κ
homogenize each cn. If cn“[H]n = {0} for each n, then no X ∈ [H]κ

matches a pattern in Q′. On the other hand, suppose cn“[H]n = {1}
for some fixed n. Then we may apply the usual shrinking procedure,
since each B under consideration is good, to produce H ′ ∈ [H]κ such
that every X ∈ [H ′]κ matches a pattern in Q′. �

Here is another way to ensure that the set generated by Q ⊆ L is
Ramsey:

Proposition 7.6. Assume 0# exists. Let κ > ω be a cardinal. Let
Q ∈ L be a set of patterns. Then the set S ⊆ [κ]κ generated by Q is
Ramsey.

Proof. Suppose Q = ρ(~α0, ~α1), where ρ is a Skolem term and ~α0, ~α1

are finite increasing sequences of elements of I such that max(~α0) <
κ ≤ min(~α1). Let I = Iκ ∩ (max(~α0), κ). Let J ∈ [I]κ be such that
between any two elements of J there are infinitely many elements of I,
and there are infinitely many elements of I before the first element of
J . We will show that either [I]κ ∩ S = ∅ or [J ]κ ⊆ S.

Suppose there is some fixed X ∈ [I]κ ∩ S. Let (A,B) ∈ Q be such
that X ∈ [A;B]. Because A ⊆ X ⊆ I, by Lemma 7.1 A is finite. Since

B ∈ L, let B = τ(~β0, ~β1, ~β2) where τ is a Skolem term and ~β0, ~β1, ~β2
are finite increasing sequences of elements of I such that

max(~β0) ≤ max(~α0) < min(~β1) ≤ max(~β1) < κ ≤ min(~β2).

Assume that all elements of A occur in ~β1. Enumerate ~β1 in increasing

order as ~β1 = 〈βi1 : i < n〉. Let F ⊆ n be such that A = {βi1 : i ∈ F}.
Now fix Y ∈ [J ]κ. We must show that Y ∈ S. That is, we must find

(A′, B′) ∈ Q such that Y ∈ [A′;B′]. Let A′ be the first |F | elements of
Y . Enumerate A′ as A′ = {γi ∈ J : i ∈ F}. We now must enlarge A′ to
get a set of size n. Let γi ∈ I for i ∈ n− F be such that the sequence



12 DAN HATHAWAY

~γ = 〈γi ∈ I : i < n〉 is strictly increasing and γn−1 < min(Y − A′).

This is possible because J is sparse enough. Now let B′ = τ(~β0, ~γ, ~β2).
It remains to show that (A′, B′) ∈ Q and Y ∈ [A′, B′].

Since (A,B) ∈ Q, we have

({βi1 : i ∈ F}, τ(~β0, ~β1, ~β2)) ∈ ρ(~α0, ~α1).

By indiscernibility, we have

({γi : i ∈ F}, τ(~β0, ~γ, ~β2)) ∈ ρ(~α0, ~α1).

That is, (A′, B′) ∈ Q.
Because X ⊆ I, there is some element of I ∩ (βn−11 , κ) not in B.

So by indiscernibility, no element of I ∩ (βn−11 , κ) is in B. Again by
indiscernibility, no element of I ∩ (γn−1, κ) is in B′. However, Y −A′ ⊆
I ∩ (γn−1, κ), because γn−1 is < min(Y −A′). Because also A′∩B′ = ∅,
we have that Y ∩B′ = ∅. This establishes that Y ∈ [A′;B′]. �

This next question is natural along our line of inquiry:

Question 7.7. Does it follow from large cardinals, or is it even con-
sistent with the Axiom of Choice, that for every set Q ∈ L(R) of
([ω1]

<ω1 , [ω1]
<ω1)-patterns, the set generated by Q is Ramsey?
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