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Using Continuity Induction
Dan Hathaway

We present here a technique we call continuity induction, which can be used to prove
systematically the fundamental theorems of analysis in the same way ordinary induc-
tion is used to prove theorems in discrete mathematics. The method provides a unified
way to pass from local properties of the reals to global properties just as ordinary in-
duction passes from local implication (if true for &, the theorem is true for k 4 1) to
a global conclusion. We demonstrate the method by using it to prove the Intermediate
Value Theorem and the Heine-Borel Theorem.

Continuity induction has been rediscovered regularly (see the historical notes at the
end of this Capsule). With each reappearance, the concept has been refined so that
with this version we hope that it may finally be suitable for students in college-level
analysis classes.

The method

Principle of continuity induction Let ¢ be a truth-valued function of a real vari-
able, and let [a, b] be a closed interval. If

(1) ¢(a) holds,

(2) for any x € [a, b), if ¢(y) is true for all a < y < x, then there exists a § > 0
such that ¢ (y) for all y € [x, x + §), and

(3) for any x € (a, b], if ¢(y) is true foralla < y < x, then ¢ (x),

then ¢ (x) is true for all x € [a, b].

Here is a proof. Suppose (1), (2) and (3) are satisfied. Let X ={a <y <b | ¢(»)
is false}, and let x = inf X. By (1) and (2), x > a. For the purpose of contradiction,
suppose that x < b. By definition of infimum, ¢ (y) holds for y in [a, x), so by (3),
¢ (x) holds. By (2), for some § > 0, ¢(y) holds for y in [a, x + §), which contradicts
the hypothesis that x = inf X. The only remaining possibility is that x = b, so ¢ (y)
holds for all y in [a, b). Then by (3), ¢ (b) holds as well, and we are done.
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The Intermediate Value Theorem Let f be continuous on [a, b] with f(a) <
f(b). We will show that if v is such that f(a) < v < f(b), then there exists an x in
[a, b] such that f(x) = v. On the contrary, however, suppose that f(x) # v for all x
in [a, b]. Let ¢ (x) be the statement “ f(x) < v”. Then

(1) ¢(a) holds by hypothesis,

(2) Letx € [a, b) and suppose ¢ (x) holds. Since f is continuous, as is well-known,
there must be a 6 > 0 such that y in [x, x + §) implies ¢ (y), and

(3) Letx € (a, b] and suppose ¢ (y) holds for all y € [a, x). Since f is continuous,
it cannot be that f(x) > v. By hypothesis, f(x) # v so ¢ (x) holds.

Thus, ¢ (b) holds, which contradicts the assumption v < f(b). [ |

The Heine-Borel Theorem Let A C R be a closed and bounded set. Let O be any
open cover of A. Leta = inf A and b = sup A. Note that ¢ is in A because A is closed.
Let ¢ (x) be the statement “[a, x] N A is covered by a finite subcollection of O.”

(1) Since O covers A and a is in A, there must be some U € O such thata € U.
Hence, {U} C O is a finite cover of {a} = [a, a] N A, that is, ¢ (a) holds.

(2) Let x € [a, b) and suppose ¢ (x) holds. Because any open cover of [a, x] N A
also covers [a, x + §) N A for some §, there exists § > 0 such that ¢ (y) for all
yin [x, x +§).

(3) Let x € (a, b] and suppose ¢ (y) holds for all y in [a, x). If x &€ A, then there
must be some y < x such that [a, y]N A = [a,x] N A (since A is closed).
In this case, ¢ (x) holds by assumption. If x is in A, then let U € O be such
that x is in U and let B € U be an open interval such that x is in B. Choose
y € [a,x) N B and let C € O be a finite cover of [a, y] N A. Then C U {U}
covers [a, x] N A, so ¢ (x) holds.

Thus, ¢ (b) holds. That is, [a, b] N A = A is covered by a finite subcover of O. |

Notice that we have the feeling of actually constructing a finite subcover in this
proof. That is, an application of step (1) or (3) adds a single open set to a finite sub-
cover, while step (2) does not change the current subcover.

Conclusion Continuity Induction is a general technique that conceptually unifies
finding analytic proofs. Generalized induction techniques have this property too. For
instance, proofs involving Zorn’s Lemma can be reformulated and unified using trans-
finite induction. Once an induction technique like this is mastered, the object to be
constructed in such a proof is obtained in an algorithmic and natural way. As is well
known, the difficult point of an inductive-style proof is finding the right induction
statement. However, once ¢ (x) is chosen correctly, then, as these examples show, (1),
(2), and (3) almost prove themselves!

Historical notes

Continuity induction goes back at least to ideas of Lester Ford [2]. These were devel-
oped by Duren [1] and later by Shanahan [5], [6]. An independent effort, quite close
to the present work, is the paper [4] by Moss and Roberts. The most recent incarnation
is the paper [3] by Kalantari, who collected these references and formulated continu-
ity induction using conditions similar to (1) and (2). We encountered Kalantari’s work
only after completing ours. Our contribution is the addition of condition (3), which
makes continuity induction easy to apply to a closed interval.
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Summary. Here is a technique for proving the fundamental theorems of analysis that provides
a unified way to pass from local properties to global properties on the real line, just as ordinary
induction passes from local implication (if true for k, the theorem is true for k 4 1) to a global
conclusion in the natural numbers.
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I think I’ve solved the problem.
But I still lie in a ball.

What I wait for is time.

It has to pass the two-day test.
And it might not.

Well, Kerin didn’t

Kerin was merely born by me.
She did not get

to stay by me.

So I lie here and curl.

I lie here and wait.

Not for a phone call.

Not for an ambulance call.
Only for my own mind

to think too much.

—from Crossing the Equal Sign by Marion Deutche Cohen [p. 101]
reviewed in this issue on page 241.
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