Aspects of Generalized Dominating Numbers

Dan Hathaway

University of Michigan

Basic Definitions

Given a poset $\langle P, \leq_P \rangle$, define $\operatorname{cf}\langle P, \leq_P \rangle := \min\{|A| : (\forall p \in P)(\exists a \in A) \ p \leq a\}.$ Given a set Γ of functions from a set X to a regular cardinal κ ,

$$\mathfrak{d}(\Gamma) := \operatorname{cf}\langle \Gamma, \leq \rangle,$$

where $f \leq g$ iff $(\forall x \in X) f(x) \leq g(x)$.

A challenge-response relation is a tripple

$$\mathcal{R} = \langle R_-, R_+, R \rangle$$

such that $R \subseteq R_- \times R_+$. The norm $||\mathcal{R}||$ of \mathcal{R} is $||\mathcal{R}|| := \min\{|A| : (\forall r \in R_-)(\exists a \in A) \, rRa\}.$ Note: $\mathfrak{d}(\Gamma) = ||\langle \Gamma, \Gamma, \leq \rangle||$.

Examples

- $\mathfrak{d}(\omega) = \mathfrak{d}$, the "dominating number".
- $\mathfrak{d}(^{\lambda}\lambda)$ is similar to \mathfrak{d} .
- $\mathbf{D}(\omega_1\omega)=?$
- $\mathfrak{d}(^{\lambda}\omega) = 2^{\lambda} = \mathfrak{c}$ when $\lambda < \mathfrak{c}$ and \mathfrak{c} is real-valued measurable.
- $\mathfrak{d}({}^{\lambda}\kappa) < 2^{\lambda} = \mathfrak{c}$ when $\omega < \kappa \leq \lambda < \mathfrak{c}$ and \mathfrak{c} is real-valued measurable.
- $\mathfrak{d}(^{\mathfrak{c}}\omega) = 2^{\mathfrak{c}}$. More generally:
- $\mathfrak{d}(^{\lambda}\kappa) = 2^{\lambda}$ when $\lambda^{\kappa} = \lambda$.

Baire Hierarchy

- Let \mathcal{B}_0 be the set of continuous functions from $^{\omega}\omega$ to ω .
- Let \mathcal{B}_1 be the set of functions that are limits of countable sequences of \mathcal{B}_0 functions. These are the "Baire class 1" functions.
- Let \mathcal{B}_2 be the set of functions that are limits of countable sequences of \mathcal{B}_1 functions, etc.

What is $\mathfrak{d}(\mathcal{B}_0)$? What is $\mathfrak{d}(\mathcal{B}_1)$? What is $||\langle \mathcal{B}_1, \mathcal{B}_2, \leq \rangle||$? Etc.

Well-founded Trees

Given $\alpha \leq \omega_1$, let \mathcal{W}_{α} be the set of all well-founded subtrees of $^{<\omega}\omega$ of rank $<\alpha$. For every $f \in \mathcal{B}_0$ there is a well-founded tree $\phi^-(f) \subseteq {^{<\omega}\omega}$, and for every well-founded tree $T \subseteq {^{<\omega}\omega}$ there is a $\phi^+(T) \in \mathcal{B}_0$ such that $(\forall f)(\forall T)$

$$\phi^-(f) \subseteq T \Rightarrow f \le \phi^+(T)$$
.

Theorem 1

For every α such that $\omega \leq \alpha < \omega_1$, $\operatorname{cf}\langle \mathcal{W}_{\alpha}, \subseteq \rangle = \mathfrak{d}$.

Thus, $\mathfrak{d}(\mathcal{B}_0) = \mathfrak{d}$.

Constructibility

Functions from a big cardinal to a small one can encode information. Sometimes, "constructibility can be reduced to domination":

Theorem 2a

Let λ and κ be infinite cardinals. For every $A \subseteq \lambda$ there is a function $f : {}^{\kappa}\lambda \to \kappa$ such that whenever M is a transitive model of ZF such that ${}^{\kappa}\lambda \subseteq M$ and some $g : {}^{\kappa}\lambda \to \kappa$ in M dominates f, then $A \in M$.

As a consequence, this gives a new proof that $\mathfrak{d}(^{\lambda}\kappa)=2^{\lambda}$ when $\lambda^{\kappa}=\lambda$.

A slight variation (but only works for $\kappa = \omega$):

Theorem 2b

Let λ be an infinite cardinal. For every $A \subseteq \lambda$ there is a function $f: {}^{\omega}\lambda \to \omega$ such that whenever M is a transitive model of ZF such that $\lambda \in M$ and some $g: ({}^{\omega}\lambda)^M \to \omega$ in M satisfies

$$(\forall x \in (^{\omega}\lambda)^M) f(x) \le g(x),$$

then $A \in M$.

Baire Class One Functions

The situation with \mathcal{B}_1 is very different from \mathcal{B}_0 . We have $\mathfrak{d}(\mathcal{B}_1) = \mathfrak{c}$. In fact, if \mathcal{F} is the set of *all* functions from ${}^{\omega}\omega$ to ω , then

$$||\langle \mathcal{B}_1, \mathcal{F}, \leq \rangle|| = \mathfrak{c}.$$

This follows because when $\lambda = \omega$ in Theorem 2b, the function f is in \mathcal{B}_1 .

Weak Compactness

Theorem 2b works by using the fact that well-foundedness is absolute. If $\kappa > \omega$, we can use weak compactness to get enough absoluteness to prove an analogous result:

Theorem 2c

Let κ be an infinite cardinal. For every $A \subseteq \kappa$ there is a function $f: {}^{\kappa}2 \to \kappa$ such that whenever M is a transitive model of ZF such that $\kappa \in M$, ${}^{\kappa}2 \subseteq M$, $(\kappa$ is weakly compact) M , and some $g: ({}^{\kappa}2)^{M} \to \kappa$ in M satisfies

$$(\forall x \in (^{\kappa}2)^M) f(x) \le g(x),$$

then $A \in M$.

Classical Results

An old result of Jockusch and Solovay is the following:

• For every Δ_1^1 set $A \subseteq \omega$ there is a function $f: \omega \to \omega$ such that if $g: \omega \to \omega$ everywhere dominates f, then $A \leq_T g$.

This contrasts with Theorem 2(a,b,c):

- For every $A \subseteq \omega$ there is a function $f : \mathbb{R} \to \omega$ such that if $g : \mathbb{R} \to \omega$ everywhere dominates f, then $A \in L[g]$.
- For every $A \subseteq \mathbb{R}$ there is a function $f : \mathbb{R} \to \omega$ such that if $g : \mathbb{R} \to \omega$ everywhere dominates f, then $A \in L(\mathbb{R}, g)$.
- For every $A \subseteq \lambda$ there is a function $f : {}^{\kappa}\lambda \to \kappa$ such that if $g : {}^{\kappa}\lambda \to \kappa$ everywhere dominates f, then $A \in L({}^{\kappa}\lambda, g)$.

Elementary Substructures

A different trick than the one in Theorem 2b and the one in Theorem 2c is to use an elementary substructure:

Theorem 2d

Let λ and κ be infinite cardinals. For every $A \subseteq \lambda$ there is a function $f : {}^{\kappa}\lambda \to \kappa$ such that whenever $\langle M, \in \rangle \prec V$ is such that ${}^{<\kappa}\lambda \subseteq M$ and some $g : {}^{\kappa}\lambda \to \kappa$ in M satisfies

$$(\forall x \in {}^{\kappa}\lambda) f(x) \le g(x),$$

then $A \in M$.

Theorems 2 a,b,c,d are all incomparable. Is there a unifying result?

Eventual Domination

A different but related problem is to consider *point-wise eventual domination*. Using a significantly different argument we get the following:

Theorem 3

For every $A \subseteq \omega$ there is a function $f : {}^{\omega}\omega \times \omega \to \omega$ in \mathcal{B}_1 such that whenever $g : {}^{\omega}\omega \times \omega \to \omega$ in \mathcal{B}_1 satisfies

$$(\forall r \in {}^{\omega}\omega)(\exists c \in \omega) f(r,c) \leq g(r,c),$$

then A is Π_1^1 in a code for g.

This result can probably be improved by only requiring g to be Borel (or even less assuming some axioms).

Contact Information

• Email: danhath@umich.edu