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Basic Definitions

Definition

Let κ be a regular cardinal. A tree T ⊆ <κκ is regular iff it is

1) perfect,

2) suitable (every maximal branch has length κ), and

3) a κ-tree (every level T (α) := T ∩ ακ of T has size < κ).

Note: If κ is not strongly inaccessible, there are no regular trees.

Definition

Given sets T0, ...,Td−1 ⊆ <κκ, T0 ⊗ ...⊗ Td−1 is the set of d-tuples
〈t0, ..., td−1〉 such that each ti ∈ Ti and the ti ’s are all on the same level.

Definition

Given sets A,X ⊆ <κκ, we say that X dominates A iff each a ∈ A is
extended by some x ∈ X .
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Definitions: SDHL

SDHL stands for “Somewhere Dense Halpern-Läuchli”.

Definition

Given a cardinal σ > 0, SDHL(d , σ, κ) is the statement that given any
regular trees T0, ...,Td−1 ⊆ <κκ and any level coloring
c : T0 ⊗ ...⊗ Td−1 → σ, there are levels l < l ′ < κ, a sequence of nodes
〈ti ∈ Ti (l) : i < d〉, and a sequence of sets 〈Xi ⊆ Ti (l

′) : i < d〉 such that
each Xi dominates SuccTi

(ti ) and c is constant on X0 ⊗ ...⊗ Xd−1.
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Definitions: HL

HL stands for “Strong Subtree Halpern-Läuchli”, and HL(d , σ, κ) is
equivalent to SDHL(d , σ, κ) when κ is strongly inaccessible.

Definition

Given regular trees S ⊆ T ⊆ <κκ, we say that S is a strong subtree of T
as witnessed by A ∈ [κ]κ iff for each l ∈ κ and t ∈ S(l),

1) If l /∈ A, then |SuccS(t)| = 1;

2) If l ∈ A, then SuccS(t) = SuccT (t).

Definition

Given a cardinal σ > 0, HL(d , σ, κ) is the statement that given any regular
trees T0, ...,Td−1 ⊆ <κκ and any level coloring c : T0 ⊗ ...⊗ Td−1 → σ,
there are strong trees S0 ⊆ T0, ..., Sd−1 ⊆ Td−1 all witnessed by the same
set of levels A ∈ [κ]κ and (∀l ∈ A) c is constant on S0(l)⊗ ...⊗ Sd−1(l).

For the rest of this presentation, assume 0 < d < ω and 0 < σ < κ.
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Complexity and reflection at a measurable

SDHL(d , σ, κ) is a Π1 statement about Vκ+1. Let M be a model of ZF
such that Vκ ⊆ M. If SDHL(d , σ, κ) is true in V , then it is true in M. If
Vκ+1 ⊆ M, then the other direction holds.

HL(d , σ, κ) is a Π2 statement about Vκ+1.

Proposition (D., H.)

Let κ be a measurable cardinal with a normal measure U . Fix d and
σ < κ. Then SDHL(d , σ, κ) iff

{α < κ : SDHL(d , σ, α)} ∈ U .

The same is true for HL(d , σ, κ) in place of SDHL.

Proof: Let j : V → M be the ultrapower embedding. Because Vκ+1 ⊆ M,
SDHL(d , σ, κ)⇔ SDHL(d , σ, κ)M . By  Los’s Theorem,
SDHL(d , σ, κ)M ⇔ {α < κ : SDHL(d , σ, α)} ∈ U . The same argument
works for HL(d , σ, κ) in place of SDHL.
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Upwards stationary reflection for SDHL

Proposition (D., H.)

Assume that
S := {α < κ : SDHL(d , σ, α)}

is stationary. Then SDHL(d , σ, κ) holds.

Let 〈Ti ⊆ <κκ : i < d〉 be a sequence of regular trees and let
c :

⊗
i<d Ti → σ be a coloring. If we can find an α < κ such that each

Ti ∩ <ακ is an α-tree and SDHL(d , σ, α) holds, then we will be done. An
elementary argument shows that for each i < d , there is a club Ci ⊆ κ
such that (∀α ∈ Ci ) Ti ∩ <ακ is an α-tree. The set

⋂
i<d Ci is a club, so it

must intersect S . An α < κ in the intersection is as desired.

Corollary

If SDHL(d , σ, α) holds for a stationary set of α < κ, then SDHL(d , σ, κ)
holds in V and in any <κ-closed forcing extension.
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Proving HL

HL(d , σ, ω) can be proved by induction on d < ω (see [7]). The successor
step involves a fusion argument. This cannot be generalized to the κ > ω
case because the intersection of a decreasing sequence of regular trees may
not be regular.

There is another proof of HL(d , σ, ω) (see [3]) which adds many Cohen
reals by forcing, and uses an ultrafilter in the extension to make selections.
This generalizes to the κ > ω case if we assume that κ is measurable in
the extension:

Theorem (see [1])

Let λ > κ satisfy λ→ (κ)dκ. Assume κ is measurable in the forcing
extension where we add λ many Cohen subsets of κ. Then HL(d , σ, κ)
holds (in the ground model).

In [6], there is a theorem with a similar hypothesis and the conclusion
implies HL(1, σ, κ) for all σ < κ, not just finite σ < ω which we
mentioned was true before.
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Getting HL at a measurable

The cardinal κ is α-strong iff there is an elementry embedding j : V → M
such that crit(j) = κ and Vκ+α ⊆ M. By a (slight modification of a)
theorem of Woodin (see [4] for a proof), if GCH holds and κ is
(κ+ d)-strong, then there is a forcing extension in which κ is measurable
and remains measurable after adding λ = κ+d Cohen reals. This gives us
the following:

Corollary

Assume there is a model in which GCH holds and there is a cardinal κ
which is (κ+ d)-strong. Then there is a forcing extension in which κ is
measurable and HL(d , σ, κ) holds.

Question: is the existence of a (κ+ d)-strong cardinal equiconsistent with
there existing a measurable κ such that (∀σ < κ) HL(d , σ, κ) ?
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Preservation by small forcings

The following works for HL in place of SDHL.

Theorem (D., H.)

Let P be a forcing of size < κ. Then SDHL(d , σ · |P|, κ) implies
1 
P SDHL(d , σ, κ).

Sketch (d = 2 case): Given a name Ṫ for a regular tree, let Der(Ṫ ) be the
set of all equivalence classes of pairs (τ̇ , α) such that

1 
P (τ̇ ∈ Ṫ and Length(τ̇) = α̌),

where (τ̇1, α1) ∼= (τ̇2, α2) iff 1 
P (τ̇1 = τ̇2). Order Der(Ṫ ) by
[(τ̇1, α1)] ≤ [(τ̇2, α2)] iff 1 
P τ̇1 v τ̇2. Fact: Der(Ṫ ) is a regular tree.
Given names Ṫ1, Ṫ2 for regular trees and a name ċ such that
1 
P [ċ : Ṫ1 ⊗ Ṫ2 → σ̌], let c : Der(Ṫ1)⊗ Der(Ṫ2)→ P× σ be any
coloring such that for each r = 〈(τ̇1, α), (τ̇2, α)〉,

First(c(r)) 
P ċ(τ̇1, τ̇2) = Second(c(r)).
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SDHL at a not weakly compact cardinal

Corollary

If GCH holds and κ is (κ+ d)-strong, then there is a forcing extension in
which (∀σ < κ) SDHL(d , σ, κ) holds, but κ is not weakly compact.

Proof: First force over V to get a model V [G1] in which SDHL holds at κ,
which is also measurable. By a theorem of Hampkins, any non-trivial
forcing of size < κ followed by a non-trivial <κ-closed forcing will make κ
NOT weakly compact. Perform any non-trivial forcing of size < κ over
V [G1] to get V [G1][G2]. This will preserve SDHL at κ by the previous
theorem. Since κ is measurable in V [G1][G2], SDHL holds on a stationary
(in fact, measure one) subset of κ. Now perform any non-trivial <κ-closed
forcing over V [G1][G2] to get V [G1][G2][G3]. Stationary subsets of κ are
preserved, so inside V [G1][G2][G3], SDHL holds on a stationary subset of
κ. Thus, SDHL holds at κ in this model.

Question: does SDHL have any large cardinal strength (beyond that of a
strongly inaccessible, which is needed for the definition)?
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Thank You!
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