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Basic Definitions

Let x be a regular cardinal. A tree T C <"k is regular iff it is
1) perfect,
2) suitable (every maximal branch has length &), and
3) a k-tree (every level T(a) := T Nk of T has size < k).

Note: If x is not strongly inaccessible, there are no regular trees.

Given sets Tg, ..., Ty—1 C ~Fk, To ® ... ® Ty4_1 is the set of d-tuples
(to, ..., tg—1) such that each t; € T; and the t;'s are all on the same level.

v

Definition
Given sets A, X C <"k, we say that X dominates A iff each a € A is
extended by some x € X.

v
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Definitions: SDHL

SDHL stands for “Somewhere Dense Halpern-Lauchli”.

Definition

Given a cardinal 0 > 0, SDHL(d, 0, k) is the statement that given any
regular trees Ty, ..., Tg_1 € <"k and any level coloring

c:To®...® Ty_1 — o, there are levels | < I’ < k, a sequence of nodes
(t; € Ti(I): i < d), and a sequence of sets (X; C T;(/') : i < d) such that
each X; dominates Succr,(t;) and c is constant on Xp ® ... ® Xg_1.

Xg \‘\ X !
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Definitions: HL

HL stands for “Strong Subtree Halpern-Lauchli”, and HL(d, 0, k) i
equivalent to SDHL(d, o, k) when & is strongly |nacce55|ble.

Given regular trees S C T C <"k, we say that S is a strong subtree of T
as witnessed by A € [k]" iff for each | € k and t € 5(/),

1) If I ¢ A, then |Succs(t)| = 1;
2) If I € A, then Succs(t) = Succr(t).

Definition
Given a cardinal o > 0, HL(d, 0, k) is the statement that given any regular
trees To, ..., Tg—1 € <"k and any level coloring c: Ty ® ... ® Ty_1 — 0,

there are strong trees So C Ty, ..., Sy_1 € T4_1 all witnessed by the same
set of levels A € [k]" and (V/ € A) c is constant on So(/) ® ... ® Sg—1(/). )

For the rest of this presentation, assume 0 < d <w and 0 < 0 < k.
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Complexity and reflection at a measurable

SDHL(d, o, k) is a My statement about V1. Let M be a model of ZF
such that V; C M. If SDHL(d, 0, k) is true in V, then it is true in M. If
Vi+1 € M, then the other direction holds.

HL(d, 0, k) is a My statement about V..
Proposition (D., H.)

Let x be a measurable cardinal with a normal measure U. Fix d and
o < k. Then SDHL(d, 0, k) iff

{a < Kk :SDHL(d,0,0)} € U.

The same is true for HL(d, o, ) in place of SDHL.

Proof: Let j: V — M be the ultrapower embedding. Because V.11 C M,
SDHL(d, 0, k) < SDHL(d, o, k). By tos's Theorem,

SDHL(d,0,x)M < {a < x : SDHL(d, 0,a)} € U. The same argument
works for HL(d, o, k) in place of SDHL.
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Upwards stationary reflection for SDHL

Proposition (D., H.)

Assume that
S:={a < k:SDHL(d,0,a)}

is stationary. Then SDHL(d, o, k) holds.

Let (T; C <"k : i < d) be a sequence of regular trees and let

€c:Q@jcq Ti — o be a coloring. If we can find an a < & such that each

T; N <% is an a-tree and SDHL(d, o, &) holds, then we will be done. An
elementary argument shows that for each / < d, thereis a club C; C &
such that (Vo € C;) T;N <%k is an a-tree. The set (;_4 G is a club, so it
must intersect S. An a < k in the intersection is as desired.

If SDHL(d, o, ) holds for a stationary set of a < k, then SDHL(d, o, k)
holds in V' and in any <k-closed forcing extension.
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Proving HL

HL(d, o, w) can be proved by induction on d < w (see [7]). The successor
step involves a fusion argument. This cannot be generalized to the kK > w
case because the intersection of a decreasing sequence of regular trees may
not be regular.

There is another proof of HL(d, o, w) (see [3]) which adds many Cohen
reals by forcing, and uses an ultrafilter in the extension to make selections.
This generalizes to the kK > w case if we assume that x is measurable in
the extension:

Theorem (see [1])

Let A > & satisfy A — (k)9. Assume & is measurable in the forcing
extension where we add A many Cohen subsets of k. Then HL(d, o, k)
holds (in the ground model).

In [6], there is a theorem with a similar hypothesis and the conclusion
implies HL(1, 0, k) for all o < K, not just finite ¢ < w which we

mentioned was true before.
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Getting HL at a measurable

The cardinal & is a-strong iff there is an elementry embedding j : V — M
such that crit(j) = k and Vi1 € M. By a (slight modification of a)
theorem of Woodin (see [4] for a proof), if GCH holds and « is

(k + d)-strong, then there is a forcing extension in which & is measurable
and remains measurable after adding A = k¢ Cohen reals. This gives us
the following:

Assume there is a model in which GCH holds and there is a cardinal s
which is (k + d)-strong. Then there is a forcing extension in which & is
measurable and HL(d, o, k) holds.

Question: is the existence of a (k + d)-strong cardinal equiconsistent with
there existing a measurable « such that (Vo < k) HL(d,0,k) ?
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Preservation by small forcings

The following works for HL in place of SDHL.
Theorem (D., H.)

Let P be a forcing of size < k. Then SDHL(d, o - |P|, k) implies
1 IFp SDHL(d, 0, k).

Sketch (d = 2 case): Given a name T for a regular tree, let Der(T) be the
set of all equivalence classes of pairs (7, ) such that

1lkp (7 € T and Length(7) = &),

where (71, 1) 2 (72, a2) iff 11Fp (71 = 72). Order Der(T) by
[(71,01)] < [(72, a2)] iff 1IFp 71 C 72. Fact: Der( T) is a regular tree.
Given names Tl, T, for regular trees and a name ¢ such that

1lFp [¢: Ty ® To — &), let ¢ : Der(T1) @ Der(T2) — P x o be any
coloring such that for each r = ((71, @), (72, @)),

First(c(r)) IFp ¢(71, 72) = Second(c(r)).
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SDHL at a not weakly compact cardinal

If GCH holds and & is (k + d)-strong, then there is a forcing extension in
which (Vo < k) SDHL(d, 0, ) holds, but & is not weakly compact.

Proof: First force over V to get a model V[G;] in which SDHL holds at &,
which is also measurable. By a theorem of Hampkins, any non-trivial
forcing of size < k followed by a non-trivial <k-closed forcing will make
NOT weakly compact. Perform any non-trivial forcing of size < k over
V[Gi] to get V[Gi][Gz]. This will preserve SDHL at x by the previous
theorem. Since k is measurable in V[G1][Gz], SDHL holds on a stationary
(in fact, measure one) subset of x. Now perform any non-trivial <x-closed
forcing over V[G1][G2] to get V[G1][G2][Gs]. Stationary subsets of k are
preserved, so inside V[Gi1][G2][Gs], SDHL holds on a stationary subset of
. Thus, SDHL holds at « in this model.

Question: does SDHL have any large cardinal strength (beyond that of a
strongly inaccessible, which is needed for the definition)?
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Thank You!

Dan Hathaway, joint with Natasha Dobrinen HL at a Measurable July 20, 2017 12 / 12




