The Halpern-Läuchli Theorem at a Measurable Cardinal

Dan Hathaway, joint with Natasha Dobrinen

University of Denver

Daniel.Hathaway@du.edu

July 20, 2017

Basic Definitions

Definition

Let κ be a regular cardinal. A tree $T \subseteq {}^{<\kappa}\kappa$ is **regular** iff it is

- 1) perfect,
- 2) suitable (every maximal branch has length κ), and
- 3) a κ -tree (every level $T(\alpha) := T \cap {}^{\alpha}\kappa$ of T has size $< \kappa$).

Note: If κ is not strongly inaccessible, there are no regular trees.

Definition

Given sets $T_0,...,T_{d-1}\subseteq {}^{<\kappa}\kappa$, $T_0\otimes...\otimes T_{d-1}$ is the set of d-tuples $\langle t_0,...,t_{d-1}\rangle$ such that each $t_i\in T_i$ and the t_i 's are all on the same level.

Definition

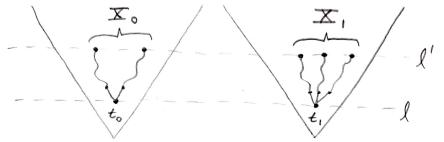
Given sets $A, X \subseteq {}^{<\kappa}\kappa$, we say that X dominates A iff each $a \in A$ is extended by some $x \in X$.

Definitions: SDHL

SDHL stands for "Somewhere Dense Halpern-Läuchli".

Definition

Given a cardinal $\sigma>0$, SDHL (d,σ,κ) is the statement that given any regular trees $T_0,...,T_{d-1}\subseteq {}^{<\kappa}\kappa$ and any level coloring $c:T_0\otimes...\otimes T_{d-1}\to \sigma$, there are levels $I<I'<\kappa$, a sequence of nodes $\langle t_i\in T_i(I):i<d\rangle$, and a sequence of sets $\langle X_i\subseteq T_i(I'):i<d\rangle$ such that each X_i dominates ${\sf Succ}_{T_i}(t_i)$ and c is constant on $X_0\otimes...\otimes X_{d-1}$.



Definitions: HL

HL stands for "Strong Subtree Halpern-Läuchli", and $HL(d, \sigma, \kappa)$ is equivalent to $SDHL(d, \sigma, \kappa)$ when κ is strongly inaccessible.

Definition

Given regular trees $S \subseteq T \subseteq {}^{<\kappa}\kappa$, we say that S is a **strong** subtree of T as witnessed by $A \in [\kappa]^{\kappa}$ iff for each $I \in \kappa$ and $t \in S(I)$,

- 1) If $l \notin A$, then $|\operatorname{Succ}_S(t)| = 1$;
- 2) If $l \in A$, then $Succ_S(t) = Succ_T(t)$.

Definition

Given a cardinal $\sigma > 0$, $\operatorname{HL}(d, \sigma, \kappa)$ is the statement that given any regular trees $T_0, ..., T_{d-1} \subseteq {}^{<\kappa} \kappa$ and any level coloring $c: T_0 \otimes ... \otimes T_{d-1} \to \sigma$, there are strong trees $S_0 \subseteq T_0, ..., S_{d-1} \subseteq T_{d-1}$ all witnessed by the same set of levels $A \in [\kappa]^{\kappa}$ and $(\forall I \in A)$ c is constant on $S_0(I) \otimes ... \otimes S_{d-1}(I)$.

For the rest of this presentation, assume $0 < d < \omega$ and $0 < \sigma < \kappa$.

Complexity and reflection at a measurable

 $\mathsf{SDHL}(d,\sigma,\kappa)$ is a Π_1 statement about $V_{\kappa+1}$. Let M be a model of ZF such that $V_\kappa\subseteq M$. If $\mathsf{SDHL}(d,\sigma,\kappa)$ is true in V, then it is true in M. If $V_{\kappa+1}\subseteq M$, then the other direction holds.

 $\mathsf{HL}(d,\sigma,\kappa)$ is a Π_2 statement about $V_{\kappa+1}$.

Proposition (D., H.)

Let κ be a measurable cardinal with a normal measure $\mathcal U$. Fix d and $\sigma<\kappa$. Then $\mathsf{SDHL}(d,\sigma,\kappa)$ iff

$$\{\alpha < \kappa : \mathsf{SDHL}(d, \sigma, \alpha)\} \in \mathcal{U}.$$

The same is true for $HL(d, \sigma, \kappa)$ in place of SDHL.

Proof: Let $j: V \to M$ be the ultrapower embedding. Because $V_{\kappa+1} \subseteq M$, $\mathsf{SDHL}(d,\sigma,\kappa) \Leftrightarrow \mathsf{SDHL}(d,\sigma,\kappa)^M$. By Łos's Theorem, $\mathsf{SDHL}(d,\sigma,\kappa)^M \Leftrightarrow \{\alpha < \kappa : \mathsf{SDHL}(d,\sigma,\alpha)\} \in \mathcal{U}$. The same argument works for $\mathsf{HL}(d,\sigma,\kappa)$ in place of SDHL .

Upwards stationary reflection for SDHL

Proposition (D., H.)

Assume that

$$S := \{ \alpha < \kappa : \mathsf{SDHL}(d, \sigma, \alpha) \}$$

is stationary. Then SDHL (d, σ, κ) holds.

Let $\langle T_i \subseteq {}^{<\kappa}\kappa : i < d \rangle$ be a sequence of regular trees and let $c: \bigotimes_{i < d} T_i \to \sigma$ be a coloring. If we can find an $\alpha < \kappa$ such that each $T_i \cap {}^{<\alpha}\kappa$ is an α -tree and $\mathrm{SDHL}(d,\sigma,\alpha)$ holds, then we will be done. An elementary argument shows that for each i < d, there is a club $C_i \subseteq \kappa$ such that $(\forall \alpha \in C_i)$ $T_i \cap {}^{<\alpha}\kappa$ is an α -tree. The set $\bigcap_{i < d} C_i$ is a club, so it must intersect S. An $\alpha < \kappa$ in the intersection is as desired.

Corollary

If $\mathsf{SDHL}(d,\sigma,\alpha)$ holds for a stationary set of $\alpha<\kappa$, then $\mathsf{SDHL}(d,\sigma,\kappa)$ holds in V and in any $<\kappa$ -closed forcing extension.

Proving HL

 $\mathsf{HL}(d,\sigma,\omega)$ can be proved by induction on $d<\omega$ (see [7]). The successor step involves a fusion argument. This cannot be generalized to the $\kappa>\omega$ case because the intersection of a decreasing sequence of regular trees may not be regular.

There is another proof of $\mathsf{HL}(d,\sigma,\omega)$ (see [3]) which adds many Cohen reals by forcing, and uses an ultrafilter in the extension to make selections. This generalizes to the $\kappa>\omega$ case if we assume that κ is measurable in the extension:

Theorem (see [1])

Let $\lambda > \kappa$ satisfy $\lambda \to (\kappa)^d_{\kappa}$. Assume κ is measurable in the forcing extension where we add λ many Cohen subsets of κ . Then $\operatorname{HL}(d, \sigma, \kappa)$ holds (in the ground model).

In [6], there is a theorem with a similar hypothesis and the conclusion implies $HL(1,\sigma,\kappa)$ for all $\sigma<\kappa$, not just finite $\sigma<\omega$ which we mentioned was true before.

Getting HL at a measurable

The cardinal κ is α -strong iff there is an elementry embedding $j:V\to M$ such that $\mathrm{crit}(j)=\kappa$ and $V_{\kappa+\alpha}\subseteq M$. By a (slight modification of a) theorem of Woodin (see [4] for a proof), if GCH holds and κ is $(\kappa+d)$ -strong, then there is a forcing extension in which κ is measurable and remains measurable after adding $\lambda=\kappa^{+d}$ Cohen reals. This gives us the following:

Corollary

Assume there is a model in which GCH holds and there is a cardinal κ which is $(\kappa + d)$ -strong. Then there is a forcing extension in which κ is measurable and $\mathrm{HL}(d,\sigma,\kappa)$ holds.

Question: is the existence of a $(\kappa + d)$ -strong cardinal equiconsistent with there existing a measurable κ such that $(\forall \sigma < \kappa)$ $\mathsf{HL}(d, \sigma, \kappa)$?

Preservation by small forcings

The following works for HL in place of SDHL.

Theorem (D., H.)

Let \mathbb{P} be a forcing of size $< \kappa$. Then $\mathsf{SDHL}(d, \sigma \cdot | \mathbb{P}|, \kappa)$ implies $1 \Vdash_{\mathbb{P}} \mathsf{SDHL}(d, \sigma, \kappa)$.

Sketch (d=2 case): Given a name \dot{T} for a regular tree, let $Der(\dot{T})$ be the set of all equivalence classes of pairs $(\dot{\tau},\alpha)$ such that

$$1 \Vdash_{\mathbb{P}} (\dot{\tau} \in \dot{T} \text{ and Length}(\dot{\tau}) = \check{\alpha}),$$

where $(\dot{\tau}_1,\alpha_1)\cong(\dot{\tau}_2,\alpha_2)$ iff $1\Vdash_{\mathbb{P}}(\dot{\tau}_1=\dot{\tau}_2)$. Order $\mathsf{Der}(\dot{T})$ by $[(\dot{\tau}_1,\alpha_1)]\leq[(\dot{\tau}_2,\alpha_2)]$ iff $1\Vdash_{\mathbb{P}}\dot{\tau}_1\sqsubseteq\dot{\tau}_2$. Fact: $\mathsf{Der}(\dot{T})$ is a regular tree. Given names \dot{T}_1,\dot{T}_2 for regular trees and a name \dot{c} such that $1\Vdash_{\mathbb{P}}[\dot{c}:\dot{T}_1\otimes\dot{T}_2\to\check{\sigma}]$, let $c:\mathsf{Der}(\dot{T}_1)\otimes\mathsf{Der}(\dot{T}_2)\to\mathbb{P}\times\sigma$ be any coloring such that for each $r=\langle(\dot{\tau}_1,\alpha),(\dot{\tau}_2,\alpha)\rangle$,

$$\mathsf{First}(c(r)) \Vdash_{\mathbb{P}} \dot{c}(\dot{\tau}_1, \dot{\tau}_2) = \mathsf{Second}(c(r)).$$

SDHL at a not weakly compact cardinal

Corollary

If GCH holds and κ is $(\kappa+d)$ -strong, then there is a forcing extension in which $(\forall \sigma<\kappa)\, {\sf SDHL}(d,\sigma,\kappa)$ holds, but κ is not weakly compact.

Proof: First force over V to get a model $V[G_1]$ in which SDHL holds at κ , which is also measurable. By a theorem of Hampkins, any non-trivial forcing of size $<\kappa$ followed by a non-trivial $<\kappa$ -closed forcing will make κ NOT weakly compact. Perform any non-trivial forcing of size $<\kappa$ over $V[G_1]$ to get $V[G_1][G_2]$. This will preserve SDHL at κ by the previous theorem. Since κ is measurable in $V[G_1][G_2]$, SDHL holds on a stationary (in fact, measure one) subset of κ . Now perform any non-trivial $<\kappa$ -closed forcing over $V[G_1][G_2]$ to get $V[G_1][G_2][G_3]$. Stationary subsets of κ are preserved, so inside $V[G_1][G_2][G_3]$, SDHL holds on a stationary subset of κ . Thus, SDHL holds at κ in this model.

Question: does SDHL have any large cardinal strength (beyond that of a strongly inaccessible, which is needed for the definition)?

References

N. Dobrinen and D. Hathaway. *The Halpern-Läuchli Theorem at a Measurable Cardinal*. Submitted (see arXiv).

M. Džamonja, J. Larson, and W. J. Mitchell. A partition theorem for a large dense linear order. Israel Journal of Mathematics 171 (2009).

I. Farah and S. Todorcevic. Some Applications of the Method of Forcing (1995).

S. Friedman and K. Thompson. *Perfect trees and elementary embeddings*. The Journal of Symbolic Logic 73 (2008).

J. D. Halpern and H. Lauchli. *A partition theorem*. Transactions of the American Mathematical Society 124 (1966).

S. Shelah. Strong partition relations below the power set: consistency - was Sierpinski right? II. Sets, Graphs and Numbers 60 (1991).

S. Todorcevic. Introduction to Ramsey Spaces (2010).

Thank You!