# Ramsey Theory on Generalized Baire Space

Dan Hathaway

University of Denver

Daniel.Hathaway@du.edu

January 18, 2018

# Ramsey Sets

Let  $\kappa$  be an infinite cardinal.

#### **Definition**

A set  $\mathcal{X} \subseteq [\kappa]^{\kappa}$  is **Ramsey** iff there is some  $H \in [\kappa]^{\kappa}$  such that either

- every  $X \in [H]^{\kappa}$  is in  $\mathcal{X}$  or
- no  $X \in [H]^{\kappa}$  is in  $\mathcal{X}$ .

H is called **homogeneous** for  $\mathcal{X}$ .

### Generalized Baire Space

Given an ordinal  $\alpha < \kappa$  and a set  $A \subseteq \alpha$ , let

$$\mathcal{B}_{A,\alpha} := \{ X \in [\kappa]^{\kappa} : X \cap \alpha = A \}.$$

The  $\mathcal{B}_{A,\alpha}$ 's form a basis for the standard topology on generalized Baire space. The topology is too fine, because if  $\kappa > \omega$ , there is a clopen set  $\mathcal{X} \in [\kappa]^{\kappa}$  that is not Ramsey (ZFC): using a coloring  $c : [\kappa]^{\omega} \to 2$  with no  $H \in [\kappa]^{\kappa}$  satisfying  $|c : [H]^{\omega}| = 1$ , let  $\mathcal{X} \subseteq [\kappa]^{\kappa}$  be the set of all X whose first  $\omega$  elements X' satisfy c(X') = 1.

How to get a coarser topology? Use the topology generated by sets of the form

$$\mathsf{Match}(A,B) := \{X \in [\kappa]^\kappa : X \cap (A \cup B) = A\}$$

where A and B must be small.



### **Patterns**

#### **Definition**

A **pattern** is a pair (A, B) such that  $A, B \subseteq \kappa$  and  $A \cap B = \emptyset$ . A set  $X \in [\kappa]^{\kappa}$  **matches** (A, B) iff  $X \cap (A \cup B) = A$ . That is,  $A \subseteq X$  and  $B \cap X = \emptyset$ . Match(A, B) is the set of  $X \in [\kappa]^{\kappa}$  that match (A, B).

#### Definition

Given  $A, B \subseteq \mathcal{P}(\kappa)$ , (A, B) is an (A, B)-pattern iff  $A \in A$  and  $B \in B$ .

#### Definition

 $\Sigma(\mathcal{A},\mathcal{B})$  is the collection of all sets  $\mathcal{X}$  of the form

$$\mathcal{X}_{\mathcal{Q}} := \{ X \in [\kappa]^{\kappa} : X \text{ matches some } (A, B) \in \mathcal{Q} \}$$

for some set  $\mathcal Q$  of  $(\mathcal A,\mathcal B)$ -patterns.

$$\Delta(\mathcal{A},\mathcal{B}) = \{\mathcal{X}: \mathcal{X}, [\kappa]^{\kappa} - \mathcal{X} \in \Sigma(\mathcal{A},\mathcal{B})\}.$$

### **Examples**

 $\Sigma([\kappa]^{<\kappa}, [\kappa]^{<\kappa})$  is the collection of all open subsets of generalized Baire space, and  $\Delta([\kappa]^{<\kappa}, [\kappa]^{<\kappa})$  is the collection of all clopen subsets. If  $\kappa > \omega$ , some set in  $\Delta([\kappa]^{<\kappa}, [\kappa]^{<\kappa})$  is not Ramsey.

When A or B is enlarged,  $\Sigma(A, B)$  becomes finer.

Silver: every Analytic set in the topology  $\Sigma([\omega]^{<\omega}, [\omega]^{<\omega})$  is Ramsey.

Ellentuck: every Analytic set in the topology  $\Sigma([\omega]^{<\omega}, [\omega]^{\leq \omega})$  is Ramsey.

Large cardinals imply that every  $\mathcal{X} \subseteq [\omega]^{\omega}$  in  $L(\mathbb{R})$  is Ramsey.

# |A|, |B| bounded below $\kappa$

#### Theorem

Fix  $\gamma < \kappa$ . Every  $\Delta([\kappa]^{<\gamma}, [\kappa]^{<\gamma})$  set is Ramsey.

### Open

Fix  $\gamma < \kappa$ . Is every  $\Sigma([\kappa]^{<\gamma}, [\kappa]^{<\gamma})$  set Ramsey?

- Is every  $\Sigma([\omega_1]^2, [\omega_1]^1)$  set Ramsey?
- Is every  $\Sigma([\kappa]^{\omega}, [\kappa]^1)$  set Ramsey if  $\kappa$  is measurable?

$$|A| = 2$$

Assume the Axiom of Choice.

#### Theorem

The following are equivalent:

- ullet  $\kappa$  is weakly compact,
- every  $\Delta([\kappa]^2, [\kappa]^{<\kappa})$  set is Ramsey,
- every  $\Sigma([\kappa]^2, [\kappa]^{<\kappa})$  set is Ramsey,
- $(\forall n \in \omega)$  every  $\Sigma([\kappa]^n, [\kappa]^{<\kappa})$  set is Ramsey.

# $|A| < \omega$

Using a similar argument:

#### Theorem

If  $\kappa$  is Ramsey cardinal, then every  $\Sigma([\kappa]^{<\omega}, [\kappa]^{<\kappa})$  set is Ramsey.

### Question

If every  $\Sigma([\kappa]^{<\omega}, [\kappa]^{<\kappa})$  set is Ramsey, what kind of large cardinal is  $\kappa$ ?

If  $\kappa$  is measurable, B can have size  $\kappa$ :

#### Theorem

Let  $\mathcal{U}$  be a  $\kappa$ -complete ultrafilter on  $\kappa$ . Then every  $\Sigma([\kappa]^{<\omega}, \mathcal{P}(\kappa) - \mathcal{U})$  set is Ramsey.

# When $Q \subseteq L$ or $Q \in L$

#### Theorem

Let  $\kappa > \omega$  be a Ramsey cardinal. Let  $\mathcal{Q} \subseteq L$  be a set of patterns. The set  $\mathcal{X}_{\mathcal{Q}} \subseteq [\kappa]^{\kappa}$  generated by  $\mathcal{Q}$  (in V) is Ramsey.

#### Theorem

Assume  $0^{\#}$  exists. Let  $\kappa > \omega$  be a cardinal. Let  $\mathcal{Q} \in L$  be a set of patterns. The set  $\mathcal{X}_{\mathcal{Q}} \subseteq [\kappa]^{\kappa}$  generated by  $\mathcal{Q}$  (in V) is Ramsey.

### Question

Does it follow from large cardinals, or is it even consistent with ZFC, that for every set  $\mathcal{Q} \in L(\mathbb{R})$  of  $([\omega_1]^{<\omega_1}, [\omega_1]^{<\omega_1})$ -patterns, the set  $\mathcal{X}_{\mathcal{Q}} \subseteq [\omega_1]^{\omega_1}$  generated by  $\mathcal{Q}$  (in V) is Ramsey?

# Thank You!

### References



E. Ellentuck. A New Proof that Analytic Sets are Ramsey. J. Symbolic Logic 39 (1974), no 1, 163-165.



F. Galvin and K. Prikry. Borel sets and Ramsey's theorem. J. Symbolic Logic 38 (1973), no 2, 193-198.



D. Hathaway. Ramsey Theory on Generalized Baire Space. To appear in Topology and its Applications.



A. Kanamori. The Higher Infinite: Large Cardinals in Set Theory from Their Beginnings. Berlin: Springer, 2009.



C. Nash-Williams. On Well-quasi-ordering transfinite sequences. Proceedings of the Cambridge Philosophical Society, 1965, no 61 (1), 33-39.



S. Shelah. Better Quasi-orders for Uncountable Cardinals. Israel J. Math. (1982) 42:177.



J. Silver. Every Analytic Set is Ramsey. J. Symbolic Logic 35 (1970), no 1, 60-64.