Generic Coding with Help

Dan Hathaway

University of Denver

Daniel.Hathaway@du.edu

April 18, 2018

Motivation

Some reals $(0^\#, \text{ etc})$ are not in any forcing extension of L. This persists even when forcing over V: whenever H is V-generic, in V[H] there is no G generic over L such that $0^\# \in L[G]$.

However, there are reals c_1, c_2 both Cohen generic over L such that $0^\# \in L[c_1, c_2]$. It must be that c_2 is not generic over $L[c_1]$ and c_1 is not generic over $L[c_2]$.

Suppose a is an arbitrary real **not in L**. Is there a generic G over L such that $0^{\#} \in L[a, G]$? We will see that the answer is YES!

$\mathcal{P}(\omega)$ Theorem

Theorem

Let M be a transitive model of ZF and assume $|\mathcal{P}(\mathbb{R})^M| = \omega$. Let $a \in \mathcal{P}(\omega) - M$. Then for any $x \in \mathcal{P}(\omega)$, there is some G such that

- 1) G is $\mathbb{H}_{\omega,\omega}$ -generic over M and
- 2) $x \in L[a, G]$.
 - We will define $\mathbb{H}_{\omega,\omega}$ soon.
 - G need not be generic over L[a] (we could have $x = a^{\#}$).
 - By universality of the collapsing poset, we can replace $\mathbb{H}_{\omega,\omega}$ with $\operatorname{Col}(\omega,\delta)$ where $\delta=(2^\omega)^M$.

Generic generics over L

Every set is generically generic over L, with help from $0^{\#}$.

Corollary

Let λ be a cardinal and $X \subseteq \lambda$. Whenever V[H] is a forcing extension of V in which λ is countable, there is some $G \in V[H]$ such that

- 1) G is $Col(\omega, \lambda) * \mathbb{H}_{\omega,\omega}$ -generic over L and
- 2) $X \in L[0^{\#}, G]$.

In V[H], we first build G_1 that is $\operatorname{Col}(\omega,\lambda)$ -generic over L. Note that $0^\# \notin L[G_1]$. From G_1 we can recover a surjection $s:\omega\to\lambda$. Fix an $x\in\mathcal{P}(\omega)$ such that $X\in L[s,x]$. Then we build G_2 that is $\mathbb{H}^{L[G_1]}_{\omega,\omega}$ -generic over $L[G_1]$ such that $x\in L[0^\#,G_2]$.

 $0^{\#}$ can be replaced by any real in V[H] that is not generic over L.

$^{\omega}\lambda$ Theorem

There is a more direct way to get that every $x \in {}^{\omega}\lambda$ is generically generic with help:

Theorem

Let λ be a singular cardinal of cofinality ω . Let M be a transitive model of ZFC such that $\lambda \in M$ and ${}^{<\lambda}2 \subseteq M$. Let $\delta = (2^{\lambda})^M$. Let $A \in \mathcal{P}(\lambda) - M$. Then in any forcing extension V[H] of V in which $|\mathcal{P}^M(\delta)| = \omega$, for any $x \in {}^{\omega}\lambda$ in V[H], there is some G such that

- 1) G is $\mathbb{H}_{\omega,\lambda}$ -generic over M and
- 2) $x \in M[A, G]$.
 - We will define $\mathbb{H}_{\omega,\lambda}$ soon.
 - We work in the extension V[H] because in V, the set $\mathcal{P}(2^{\lambda})^{M}$ must be uncountable.
 - It is important that $A \in V$.
 - We can replace $\mathbb{H}_{\omega,\lambda}$ with $\mathsf{Col}(\omega,\delta)$.

Definition

Let λ be an infinite cardinal. The forcing $\mathbb{H}_{\omega,\lambda}$ consists of all trees $T\subseteq {}^{<\omega}\lambda$ such that for each $t\supseteq \operatorname{Stem}(T), \ \{\gamma: t^\frown\gamma\not\in T\}$ has size $<\lambda$. The ordering is by inclusion.

 $\mathbb{H}_{\omega,\lambda}$ is a variant of Hechler forcing. It adds a "fast growing" function from ω to λ . Note: $\mathbb{H}_{\omega,\lambda}$ has a dense subset of size $\lambda^{\omega} \leq 2^{\lambda}$.

Definition

Fix $A \subseteq \lambda$. Given $T_1, T_2 \in \mathbb{H}_{\omega,\lambda}$, we write $T_2 \leq^A T_1$ iff $T_2 \leq T_1$ and letting $t_2 = \operatorname{Stem}(T_2)$ and $t_1 = \operatorname{Stem}(T_1)$,

$$(\forall n \in Dom(t_2) - Dom(t_1)) t_2(n) \notin A.$$

 $T_2 \leq^A T_1$ implies " T_2 does not hit A more than T_1 already does".

Definition

Given $T \in \mathbb{H}_{\omega,\lambda}$ and $t \in T$, we write $t' \supseteq_T t$ iff $t' \supseteq t$ and $t' \in T$. Given $A \subseteq \lambda$, we write $t' \supseteq_T^A t$ iff $t' \supseteq_T t$ and

$$(\forall n \in Dom(t') - Dom(t)) t'(n) \notin A.$$

Definition

A set $S \subseteq {}^{<\omega}\lambda$ is **large** iff given any $T \in \mathbb{H}_{\omega,\lambda}$, there is some $t' \supseteq_T \operatorname{Stem}(T)$ such that $t' \in S$.

Large means "the set of stems of some dense set":

Lemma

 $S\subseteq {}^{<\omega}\lambda$ is large iff there is some dense $D\subseteq \mathbb{H}_{\omega,\lambda}$ such that

$$S = \{t \in {}^{<\omega}\lambda : (\exists T \in D) \ t = Stem(T)\}.$$

Fix $A \subseteq \lambda$ and a function $\eta : A \to \lambda$ such that $(\forall \beta < \lambda) \eta^{-1}(\beta)$ has size λ .

Let G be $\mathbb{H}_{\omega,\lambda}$ -generic over some model M. Let $g=\cap G$. Then $g:\omega\to\lambda$.

Idea: whenever $g(n) \in A$, the value of $\eta(g(n))$ is a single piece of information that has been encoded. Given $x \in {}^{\omega}\lambda$ and letting $n_0 < n_1 < ...$ be the n's such that $g(n) \in A$, we hope to encode x as

$$x = \langle \eta(g(n_i)) : i < \omega \rangle.$$

Issue: does the requirement that G be generic over M cause there to be unwanted n's such that $g(n) \in A$? If we can hit dense sets by making \leq^A extensions, then we can build a G which hits all dense sets in M without interfering with our encoding.

How do we hit dense subsets of $\mathbb{H}_{\omega,\lambda}$ by making \leq^{A} -extensions?

Ingredient:

Sticking Out Observation

Let M be a transitive model such that $^{<\lambda}2\subseteq M$. Let $A\in [\lambda]^\lambda$ and assume $(\forall B\in [A]^\lambda)$ $B\not\in M$. Then if $B\in [\lambda]^\lambda\cap M$, then B-A has size λ .

Proof: If $|B - A| < \lambda$, then $B - A \in M$ therefore $B \cap A \in M$ and $B \cap A$ is a size λ subset of A.

Thus, given $T \in \mathbb{H}_{\omega,\lambda}$, if we need to extend the stem t of T by one and we are given λ choices $t \cap \gamma$ for how to do this, then λ of the γ will not be in A.

Definition

Let $S \subseteq {}^{<\omega}\lambda$ and $t \in {}^{<\omega}\lambda$.

- t is 0-S-reachable iff $t \in S$.
- for $\alpha > 0$, t is α -S-reachable iff

$$\{\gamma < \lambda : (\exists \beta < \alpha) \ t^{\gamma} \text{ is } \beta\text{-}S\text{-reachable}\}$$

has size λ .

Lemma

Let $D \subseteq \mathbb{H}_{\omega,\lambda}$ be dense. Let $S \subseteq {}^{<\omega}\lambda$ be the set

$$S = \{t : (\exists T \in D) \ t = \mathsf{Stem}(T)\}.$$

Then $(\forall t \in {}^{<\omega}\lambda)(\exists \alpha \in \mathsf{Ord}) t$ is α -S-reachable.

Note: this proof does *not* work for $\mathbb{H}_{\kappa,\lambda}$ for $\kappa > \omega$.

Main Lemma

Let M be a transitive model such that ${}^{<\lambda}2\subseteq M$. Let $A\in [\lambda]^\lambda$ be such that $(\forall B\in [A]^\lambda)$ $B\not\in M$. Let $S\subseteq {}^{<\omega}\lambda$ be large (in M). Let $T\in \mathbb{H}^M_{\omega,\lambda}$ and $t=\operatorname{Stem}(T)$. Then there exists some $t'\supseteq^A_T t$ in S.

Proof: We have that t is α -S-reachable for some α .

If $\alpha = 0$, then $t \in S$ and we are done.

If $\alpha>0$, then consider $B=\{\gamma<\lambda: (\exists \beta<\alpha)\ t^{\frown}\gamma \ \text{is}\ \beta\text{-}S\text{-reachable}\}$. It is in M and has size λ , so by the "sticking out observation", B-A has size λ . Thus, there is some $\gamma_0\in B-A$ and such that $t^{\frown}\gamma_0\in T$. If $t^{\frown}\gamma_0$ is 0-S-reachable we are done. Otherwise we can find some $t^{\frown}\gamma_0^{\frown}\gamma_1$, etc. This process will terminate after finitely many stages.

Corollary

Let M be a transitive model such that ${}^{<\lambda}2\subseteq M$. Let $A\in [\lambda]^{\lambda}$ be such that $(\forall B\in [A]^{\lambda})$ $B\not\in M$. Let $D\in \mathcal{P}^M(\mathbb{H}^M_{\omega,\lambda})$ be open dense (in M). Let $T\in \mathbb{H}^M_{\omega,\lambda}$. Then there exists some $T'\leq^A T$ in D.

Thus we can do a construction (in V) to hit the dense^M subsets of $\mathbb{H}^{M}_{\omega,\lambda}$ by making only \leq^{A} extensions.

We can alternate between doing \leq^A -extensions to hit the dense sets in M, and doing \leq -extensions to encode more and more of some $x \in {}^{\omega}\lambda$.

But how to get an $A \in [\lambda]^{\lambda}$ such that $(\forall B \in [A]^{\lambda}) B \notin M$?

ω -Stuttering Lemma

For every $\tilde{A} \subseteq \omega$, there is some $A =_{\mathcal{T}} \tilde{A}$ that is computable from every infinite subset of itself.

One can generalize this using bijections from ${}^{\sigma}2$ to 2^{σ} for $\sigma < \lambda$.

λ -Stuttering Lemma

Let M be a transitive model of ZFC such that $\lambda \in M$. Suppose $(\forall \sigma < \lambda) (2^{\sigma})^M \leq \lambda$. For every $\tilde{A} \subseteq \lambda$, there is some $A \in [\lambda]^{\lambda}$ such that $(\forall B \in [A]^{\lambda}) M[B] = M[\tilde{A}]$.

Another application of the Main Lemma

We have now proved the theorems!

Another application of the main lemma:

Theorem

Assume AD^+ . Fix $a \in \mathbb{R}$. There is a Borel function $f_a : {}^\omega \omega \to {}^\omega \omega$ with the following property: given any $g : {}^\omega \omega \to {}^\omega \omega$,

$$g \cap f_a = \emptyset \Rightarrow a \in L[C]$$

where $C \subseteq \text{Ord}$ is any ∞ -Borel code for g.

$\mathcal{P}(\omega_1)$ Conjecture

Conjecture

Assume the Axiom of Choice and that there are large cardinals. There is

- an inner model $M \supseteq \mathbb{R}$ satisfying AD,
- a set $A \subseteq \omega_1$, and
- ullet a cardinal μ

such that whenever $X\subseteq \omega_1$ and H is $Col(\omega_1,\mu)$ -generic over V, there is some $G\in V[H]$ such that

- 1) G is generic over M by a countably closed forcing and
- 2) $X \in M[A, G]$.

With the right cardinality assumption, we should not need to pass to V[H].

The $\mathbb{H}_{\omega_1,\mathbb{R}}$ game: Part 1

We can try to prove the $\mathcal{P}(\omega_1)$ conjecture using the poset $\mathbb{H}_{\omega_1,\mathbb{R}}$ defined in the natural way (conditions are trees $T\subseteq {}^{<\omega_1}\mathbb{R}$ where each node has all but countably many children).

Given $S\subseteq {}^{<\omega_1}\mathbb{R}$, the length ω_1 game $\mathbb{H}_{\omega_1,\mathbb{R}}(S)$ is as follows:

On round $\alpha < \omega_1$, Player I plays some $C_\alpha \in [\mathbb{R}]^\omega$ and then Player II plays some $r_\alpha \in \mathbb{R} - C_\alpha$. Player II wins the game iff for some $\alpha < \omega_1$,

$$\langle r_{\beta} : \beta < \alpha \rangle \in S.$$

The game is *closed*.

Player I has a winning strategy iff S is not large.

The $\mathbb{H}_{\omega_1,\mathbb{R}}$ game: Part 2

Suppose $A \subseteq \mathbb{R}$ has size ω_1 and $(\forall B \in [A]^{\omega_1})$ $B \notin M$. Assume Player II has a strategy $\Gamma \in M$ for the $\mathbb{H}_{\omega_1,\mathbb{R}}(S)$ -game that is a winning strategy in **both** M and V. Assume the Axiom of Choice in V. Then

- Player I can play so that II always responds (using Γ) with a real not in A (there are at least ω_1 responses II would make, so by the sticking out observation ω_1 responses must not be in A).
- The play of the game must terminate at some stage before ω_1 , because otherwise I wins.
- It cannot terminate by player II getting stuck because Γ is a winning strategy for II.
- Thus, it must terminate by the sequence constructed so far being an element of S.

Thus, if for each large S there is such a Γ for $\mathbb{H}_{\omega_1,\mathbb{R}}(S)$, then the $\mathcal{P}(\omega_1)$ conjecture is true.

References

J. Baumgartner and P. Dordal. *Adjoining dominating functions*. The Journal of Symbolic Logic 50 (1985).

D. Hathaway. Disjoint Borel Functions. Ann. Pure Appl. Logic 168 (2017).

—. Disjoint Infinity-Borel Functions. Submitted for Publication.