Generic Coding with Help

Dan Hathaway ¹ Sy David Friedman ²

¹University of Vermont: Daniel.Hathaway@uvm.edu

²University of Vienna, Austria

May 19, 2019

How much information can be forced into a real?

Some reals $(0^\#, \text{ etc})$ are not in any forcing extension of L. This persists even when forcing over V: whenever H is V-generic, in V[H] there is no G generic over L such that $0^\# \in L[G]$.

However, there are reals c_1, c_2 both Cohen generic over L such that $0^\# \in L[c_1, c_2]$. It must be that c_2 is not generic over $L[c_1]$ and c_1 is not generic over $L[c_2]$.

Suppose a is an arbitrary real **not in L**. Is there a generic G over L such that $0^{\#} \in L[a, G]$? We will see that the answer is YES!

Encoding any real into two Cohen reals (Mostowski)

Let M be a c.t.m. of ZFC. Fix $x \in {}^{\omega}2$. We will find $g, h \in {}^{\omega}2$ Cohen generic over M such that x = g XOR h.

Let $\langle D_n : n < \omega \rangle$ be an enumeration of all dense subsets (in M) of Cohen forcing.

Let $g_0 \in {}^{<\omega}2$ be in D_0 . Let $h_0 \in {}^{<\omega}2$ be the same length as g_0 such that

$$g_0 \text{ XOR } h_0 = x \upharpoonright |g_0|.$$

Let $h_1 \supseteq h_0$ be in D_0 . Let $g_1 \supseteq g_0$ be the same length as h_1 such that

$$g_1$$
 XOR $h_1 = x \upharpoonright |g_1|$.

Let $g_2 \supseteq g_1$ be in D_1 . Let $h_2 \supseteq h_1$ be the same length as g_2 such that

$$g_2$$
 XOR $h_2 = x \upharpoonright |g_2|$.

etc. The reals $g = \bigcup g_i$ and $h = \bigcup h_i$ are as desired.

3 / 23

More complicated patterns with Cohen reals

Theorem (Mostowski)

Let M be a c.t.m. of ZFC. Fix $I \in \omega$. Let \mathcal{A} be a collection of subsets of $\{0,...,I\}$ that contains all singletons and is closed under subsets. Fix any $x \in {}^{\omega}2$. Then there are reals $g_0,...,g_I$ all Cohen generic over M such that for any $A \subseteq \{0,...,I\}$,

- 1) if $A \in \mathcal{A}$, then $\{g_i : i \in A\}$ is contained in a forcing extension of M;
- 2) if $A \notin \mathcal{A}$, then $x \in L[\{g_i : i \in A\}]$.

In their paper Set Theoretic Blockchains [1], the authors prove more complicated versions of this.

The main theorem

Let M be a c.t.m. of ZFC. Say that $a \in {}^{\omega}2$ is **helpful** iff for any $x \in {}^{\omega}2$, there is a G generic over M such that $x \in L[a, G]$.

Theorem (Habič et al [1])

If a is Cohen generic over M, it is helpful.

Theorem (Habič, Sy Friedman)

If a is unbounded over M, it is helpful.

Theorem (Sy Friedman)

If a is Sacks generic over M, it is helpful.

Our main theorem:

Theorem [4]

If a is any real not in M, it is helpful.

Recall *Tree Hechler Forcing*, whose conditions are trees with cofinite splitting beyond their stems:

Definition

The forcing $\mathbb H$ consists of the trees $T\subseteq {}^{<\omega}\omega$ such that for all $t\supseteq {\sf Stem}(T)$ in T,

$$\{z \in \omega : t ^\frown z \not\in T\}$$
 is finite.

The ordering is by inclusion.

Given a generic G for \mathbb{H} , G can be recovered from $\bigcup \bigcap G$ (the union of the stems of conditions in G), which is a function from ω to ω .

Given a set $A \subseteq \omega$, we can define an auxillary ordering \leq_A on \mathbb{H} :

Definition

Let $A \subseteq \omega$. Given $t, t' \in {}^{<\omega}\omega$, we write $t' \supseteq_A t$ iff $t' \supseteq t$ and

$$(\forall n \in \mathsf{Dom}(t') - \mathsf{Dom}(t)) \ t'(n) \not\in A.$$

So if $t' \supseteq_A t$, then t' does not "hit" A any more than t already does.

Definition

Let $A \subseteq \omega$. Given $T, T' \in \mathbb{H}$, we write $T' \leq_A T$ iff $T' \leq T$ and $Stem(T') \supseteq_A Stem(T)$.

So $T' \leq_A T$ means that T' is stronger than T and the stem of T' does not hit A any more than the stem of T.

Given an \mathbb{H} -generic G (over a transitive model) and an $A\subseteq \omega$, here is how we can decode a real $x\in {}^{\omega}2$: let $a_0,a_1,...$ be the increasing enumeration of A. Let $\eta_A:A\to 2$ be the function $\eta_A(a_i)=0$ if i is even, and 1 if i is odd. Consider $g=\bigcup\bigcap G$ (g is the union of the stems of conditions in G). We have $g:\omega\to\omega$. Let

$$n_0 < n_1 < ...$$

be the increasing enumeration of the set of $n \in \omega$ such that $g(n) \in A$. We can now "decode" the real $\langle \eta_A(g(n_i)) : i < \omega \rangle$. That is, every time g hits A, a new bit is encoded according to which element of A is hit.

Question

Given $A\subseteq\omega$ and a transitive model M of ZF , can we create a generic for $\mathbb H$ over M without encoding unwanted bits in the process?

By genericity, we **cannot** if $A \in M$. But we **can** if A is infinite but has no infinite subset in M (the Main Lemma)!

Main Lemma

Let M be a transitive model of $\mathbb{Z}F$. Let $A\subseteq\omega$ be infinite but have no infinite subset in M.

Let $\mathbb{P} = \mathbb{H}^M$. Let $\mathcal{D} \in \mathcal{P}^M(\mathbb{P})$ be open dense (in M). Let $T \in \mathbb{P}$.

Then there exists some $T' \leq_A T$ in \mathcal{D} .

So if $\mathcal{P}^M(\mathbb{P})$ is countable (in V), then constructing a G which is \mathbb{P} -generic over M can be accomplished by constructing a decreasing \leq_A -sequence. to hit all ω many dense sets.

Assuming the Main Lemma is true, we can prove the Main Theorem.

Hathaway Generic Coding with Help May 19, 2019 9 / 23

So now we can alternate between hitting dense sets by making \leq_A -extensions, and encoding whatever bits we want by making non- \leq_A -extensions.

Generic Coding with Help Theorem (Main Theorem)

Let M be a transitive model of ZF such that $\mathcal{P}^M(\mathbb{H}^M)$ is countable. Let $\bar{a}, x \in {}^\omega 2$ be such that $\bar{a} \not\in M$.

Then there is a G that is \mathbb{H}^M -generic over M such that $x \in L[\bar{a}, G]$.

Proof: let $A\subseteq \omega$ be Turing equivalent to \bar{a} and also computable from every infinite subset of itself. Let $\langle \mathcal{D}_i:i<\omega\rangle$ be an enumeration of the open dense subsets of \mathbb{H}^M in M. Let $T'_{-1}=1\in \mathbb{H}^M$. Now let $i\geq 0$.

Let $T_i \leq_A T'_{i-1}$ be such that $T_i \in \mathcal{D}_i$. Let $T'_i \leq T_i$ be a non- \leq_A -extension of T_i extending the stem of T_i by one to encode the i-th bit of x. etc.

Hathaway Generic Coding with Help May 19, 2019 10 / 23

Main Lemma: Part 1

But how do we prove the Main Lemma? That is, how do we \leq_A -extend a condition to hit a dense subset \mathcal{D} of \mathbb{H}^M in our countable transitive model *M*?

Taking one step:

Sticking Out Observation

Let M be a transitive model of ZF. Let $A \subseteq \omega$ be infinite but there are no infinite subsets of A in M. Then if $B \subseteq \omega$ is infinite and in M, then B - Ais infinite.

Proof: Assume towards a contradiction that B - A is finite. Then $B-A\in M$. Since both B and B-A are in M, we have $B\cap A\in M$ as well. At the same time, since B is infinite and B-A is finite, $B\cap A$ must be infinite. So now $B \cap A$ is an infinite subset of A which is in A, which is a contradiction.

Main Lemma: Part 2

To prove the Main Lemma, we need a "rank analysis" on the stems of the conditions in our dense set.

Definition

Given $S \subseteq {}^{<\omega}\omega$ and $t \in {}^{<\omega}\omega$,

- t is 0-S-reachable iff $t \in S$;
- t is α -S-reachable for some $\alpha > 0$ iff

$$\{z \in \omega : t^{\frown}z \text{ is } \beta\text{-}S\text{-reachable for some } \beta < \alpha\}$$

is infinite.

• t is S-reachable iff t is α -S-reachable for some α .

Fact: fix $T \in \mathbb{H}$ and $\mathcal{D} \subseteq \mathbb{H}$. Let $t = \operatorname{Stem}(T)$ and $S \subseteq {}^{<\omega}\omega$ be the set of stems of elements of \mathcal{D} . Then \mathcal{D} is dense below T iff t is S-reachable.

Main Lemma: Part 3

Proof of Main Lemma: fix M and $\mathcal{D} \subseteq \mathbb{H}^M$ which is dense. Fix $T \in \mathbb{H}^M$. Let $A \subseteq \omega$ be infinite with no infinite subsets in M. We will find $T' \subseteq_A T$ in \mathcal{D} . Let $t = \operatorname{Stem}(T)$ and S be the set of stems of elements of \mathcal{D} . It suffices to find some $s \supseteq_A t$ in $T \cap S$.

Let α be such that t is α -S-reachable. If $\alpha=0$, then set s:=t and we are done. If not, the set $B=\{z\in\omega:t^\frown z\text{ is }\beta\text{-}S\text{-reachable for some }\beta<\alpha\}$ is infinite (and in M). So by the Sticking Out Observation, B-A is infinite. So, fix some $z_0\in(B-A)$ such that $t^\frown z_0\in\mathcal{T}$.

Now $t^\frown z_0$ is β -S-reachable for some $\beta < \alpha$. If $\beta = 0$, then set $s := t^\frown z_0$ are we are done. If not, then we can find some $z_1 \not\in A$ such that $t^\frown z_0^\frown z_1 \in T$ and $t^\frown z_0^\frown z_1$ is δ -S-reachable for some $\delta < \beta$.

etc. This must eventually terminate.

The complement of a Turing Cone

In the Generic Coding with Help Theorem, we actually have $x \leq_T \bar{a} \oplus g$ where $g = \bigcup \bigcap G$.

Corollary

Assume $0^{\#}$ exists. Let S be the set of reals that are generic over L. Then although S is disjoint from the Turing cone above $0^{\#}$, we have that for any $\bar{a} \in {}^{\omega}2 - L$, the set

$$\{\bar{a} \oplus s : s \in S\}$$

is cofinal in the Turing degrees.

Nontrivial Nodes of Compatibility?

Definition

Let $\alpha < \omega_1$. The set \mathcal{H}_{α} is the collection of all (countable) transitive models of ZFC of height α .

We say that $M_1, M_2 \in \mathcal{H}_{\alpha}$ are **compatible** iff there is some $N \in \mathcal{H}_{\alpha}$ such that $M_1 \cup M_2 \subseteq N$.

Conjecture (Sy Friedman)

If $M \in \mathcal{H}_{\alpha}$ is compatible with every model in \mathcal{H}_{α} , then $M = L_{\alpha}$.

A counterexample would mean there exists some very "gentle" information not in L_{α} .

Friedman's Conjecture is True

Theorem

Let $M_1, J \in \mathcal{H}_{\alpha}$ be such that $M_1 \not\subseteq J$. Then there is a forcing extension M_2 of J that is not compatible with M_1 .

Proof: let $a' \in M_1 - J$ be a set of ordinals. Force over J to get $J[G_1]$ to make sup a' countable. Now a' is encoded by a real \bar{a} (which by mutual genericity can be assumed to not be in $J[G_1]$). Then force over $J[G_1]$ to get $M_2 := J[G_1][G_2]$, using the Generic Coding with Help Theorem, so that G_2 together with \bar{a} computes a real not in any model of ZFC of height α .

History: I asked Friedman if the Generic Coding with Help Theorem was already known, and he said no but he was looking for such a theorem to make the proof above work.

Larger Sets are Generically Helpful

The Generic Coding with Help Theorem uses a real number as "help". Larger objects can be used as help when we force over the universe to make them countable.

Corollary

Let M be a transitive model of $\mathbb{Z}F$. Let λ be a cardinal such that $\lambda \in M$. Let $\mathbb{P} = (\mathsf{Col}(\omega, \lambda) * \mathbb{H})^M$. Let \tilde{V} be an outer model of V in which $\mathcal{P}^M(\mathbb{P})$ is countable.

Let $X \in \mathcal{P}^{\tilde{V}}(\lambda)$. Let $A \in \mathcal{P}^{\tilde{V}}(\lambda) - M$. Then there is a G in \tilde{V} such that

- 1) G is \mathbb{P} -generic over M,
- 2) $X \in L(A, G)$.

Are Larger Sets Helpful in V itself?

The previous slide shows that larger sets are helpful in sufficiently large forcing extensions of the universe. What about in V itself?

Question

Assume CH and a proper class of Woodin cardinals. Is there some $\bar{a} \subseteq \mathbb{R}$ and some forcing $\mathbb{P} \in L(\mathbb{R})$ that is countably closed such that given any $X \subseteq \omega_1$, there is a G that is \mathbb{P} -generic over $L(\mathbb{R})$ such that

$$X \in L(\bar{a},\mathbb{R})[G]$$
?

If true, we then ask if it is true for any $\bar{a} \subseteq \mathbb{R}$ not in $L(\mathbb{R})$.

Note: Woodin has conjectured that if CH holds and there is a proper class of Woodins and there is a mouse with a measurable Woodin cardinal, then for any $X\subseteq \omega_1$, there is some model M of AD containing all the reals such that X is $\operatorname{Col}(\omega_1,\mathbb{R})$ -generic over M.

What about HOD?

Every real is generic over HOD.

Every real is generic over HOD with help using $\mathbb{H}^{\mathrm{HOD}}$.

 \mathbb{H} has size 2^{ω} (and is c.c.c).

Question

Is every real generic over HOD by a poset of size $\leq (2^{\omega})^{HOD}$?

Sy Friedman believes he has a proof that the anser is no in some models of ${\rm ZFC}.$

The Original Application of the Main Lemma

The original application for the Main Lemma was to prove results like the following:

Theorem (ZF)

Assume there is no injection of ω_1 into \mathbb{R} . Fix $a \in \mathbb{R}$. There is a Baire class one function $f_a : {}^{\omega}\omega \to {}^{\omega}\omega$ with the following property:

whenever $g:{}^\omega\omega\to{}^\omega\omega$ is $\infty ext{-Borel}$ and $f_{\mathsf{a}}\cap g=\emptyset$, then

$$a \in L[C]$$

where C is any ∞ -Borel code for g.

Domination of Functions from $\mathbb R$ to $\mathbb R$

The previous slide gives information about the disjointness relation of functions from $\mathbb R$ to $\mathbb R$. Given $f,g:\mathbb R\to\mathbb R$, we say that g everywhere dominates f iff $(\forall x\in\mathbb R)\,f(x)\leq g(x)$. Here is an aside about the everywhere domination relation:

Theorem

Fix $a \in \mathbb{R}$. Let $f^a : \mathbb{R} \to \mathbb{R}$ be the function

$$f^{a}(x) = \begin{cases} \frac{1}{(x-a)^{2}} & \text{if } x \neq a \\ 0 & \text{if } x = a. \end{cases}$$

Suppose $g: \mathbb{R} \to \mathbb{R}$ everywhere dominates f^a .

Then $a \in L[g]$.

Thank You!

References

M. Habič, J. Hamkins, L. Klausner, J. Verner, K Williams. *Set-Theoretic Blockchains* https://arxiv.org/abs/1808.01509.

D. Hathaway. *Disjoint Borel Functions*. Annals of Pure and Applied Logic, 168 (2017), no.8, 1552-1563.

D. Hathaway. *Disjoint Infinity Borel Functions*. http://arxiv.org/abs/1708.09513.

S. Friedman, D. Hathaway. *Generic Coding with Help and Amalgamation Failure*. http://arxiv.org/abs/1708.09513.

J. Palumbo. *Unbounded and Dominating Reals in Hechler Extensions*. Journal of Symbolic Logic, 78 (2013), no.1, 275-289.

H. Woodin. *The Axiom of Determinacy, Forcing Axioms, and the Non-Stationary Ideal, 2nd Edition.* Berlin, Boston: DE Gruyter. 2010.