Disjoint ∞-Borel Functions

Dan Hathaway

University of Denver

Daniel.Hathaway@du.edu

October 17, 2017

Motivating Statement

Consider the following statement:

Each $A \subseteq \mathbb{R}$ of size 2^{ω} can be surjected onto \mathbb{R} by a Borel function.

- It follows from ZF + AD (as we will see soon).
- It, together with AC, implies $add(\mathcal{M}) < 2^{\omega}$. That is, there is a size $< 2^{\omega}$ collection of meager sets of reals whose union is not meager.
- It holds in the *iterated perfect set model* (start with CH, then add ω_2 Sacks reals by iterated forcing). Thus, it is consistent with ZFC and $add(\mathcal{M}) = \omega_1 < \omega_2 = 2^{\omega}$. It is open whether it is consistent with $ZFC + 2^{\omega} > \omega_2$.

Stronger Statement

Consider the following stronger statement:

Each uncountable $A \subseteq \mathbb{R}$ can be surjected onto \mathbb{R} by a Borel function.

- It implies the statement on the previous slide.
- It is false if we assume ZFC (it is certainly false if we assume $\neg CH$, and if CH holds, then $add(\mathcal{M}) < 2^{\omega}$ cannot hold).
- It follows from ZF + the statement that every uncountable set of reals has a non-empty perfect subset (which follows from ZF + AD). Proof: If $A\subseteq \mathbb{R}$ is uncountable and $P\subseteq A$ is a perfect subset, then there is a real which codes the set P, and this real can be used to define a continuous function which maps $P\subseteq A$ onto \mathbb{R} .
- It also (almost) follows from the statement on the next slide...

Even Stronger Statement: Ψ

This will be our focus:

Definition of Ψ

 Ψ is the following statement: for each $a \in \mathbb{R}$ there is a function $f_a : \mathbb{R} \to \mathbb{R}$ such that the following hold:

- The function $(a, x) \mapsto f_a(x)$ is Borel.
- $(\forall g : \mathbb{R} \to \mathbb{R}) \{ a \in \mathbb{R} : f_a \cap g = \emptyset \}$ is countable.

Relation to Previous Statement

Recall that Uniformization is the fragment of AC which says that given any $R \subseteq \mathbb{R} \times \mathbb{R}$ satisfying $(\forall x \in \mathbb{R})(\exists y \in \mathbb{R})(x,y) \in R$, then there is a function $g : \mathbb{R} \to \mathbb{R}$ such that $Graph(g) \subseteq R$.

Proposition

 $\operatorname{ZF} + \operatorname{Uniformization} + \Psi$ implies that if $A \subseteq \mathbb{R}$ is uncountable, then it can be surjected onto \mathbb{R} by a Borel function.

Proof: Fix an uncountable set $A\subseteq\mathbb{R}$. For each $x\in\mathbb{R}$, the function $a\mapsto f_a(x)$ is Borel. We claim that for some $x\in\mathbb{R}$, the function $a\mapsto f_a(x)$ surjects A onto \mathbb{R} . Suppose this is not the case. For each $x\in\mathbb{R}$, the set $Y_x:=\mathbb{R}-\{f_a(x):a\in A\}$ is non-empty. Apply Uniformization to get $g:\mathbb{R}\to\mathbb{R}$ such that $(\forall x\in\mathbb{R})\ g(x)\in Y_x$. Then g is disjoint from f_a for each $a\in A$, which is a contradiction because g can be disjoint from only countably many of the f_a functions.

Proving Ψ from AD^+ : Part 1

Without loss of generality, we will use ${}^{\omega}\omega$ in place of \mathbb{R} . AD⁺ is a statement that implies both AD and that every function $g: \mathbb{R} \to \mathbb{R}$ is ∞ -Borel. Note: AD implies there is no injection of ω_1 into \mathbb{R} .

Definition

A set $S \subseteq {}^{\omega}\omega$ is ∞ -Borel iff there is a formula φ and a set of ordinals $C \subseteq \text{Ord such that } (\forall x \in {}^{\omega}\omega) x \in S \Leftrightarrow L[C][x] \models \varphi(C,x).$

Definition

A function $g: {}^{\omega}\omega \to {}^{\omega}\omega$ is ∞ -Borel iff there is a set of ordinals $C \subseteq \text{Ord}$ and a formula φ such that for all $x \in {}^{\omega}\omega$ and $n, m \in \omega$,

$$g(x)(n) = m \Leftrightarrow L[C][x] \models \varphi(C, x, n, m).$$

Idea: ∞-Borel functions are "nice". If there is a proper class of Woodin cardinals and $A \subseteq \mathbb{R}$ is universally Baire, then $L(\mathbb{R},A) \models AD^+$. Thus, if there is a proper class of Woodin cardinals and $g: \mathbb{R} \to \mathbb{R}$ is universally

Baire, then ϱ is ∞ -Borel. Dan Hathaway (DU)

We will show that AD^+ implies Ψ . For each $a \in {}^\omega \omega$, we will define $f_a : {}^\omega \omega \to {}^\omega \omega$ as follows: Fix $a \in {}^\omega \omega$. Pick some $A \subseteq \omega$ such that $A =_T a$, A is infinite, and $A \leq_T B$ whenever B is an infinite subset of A. Such a set A is easy to construct. We actually only need A to be Δ^1 in every infinite subset of itself.

Let $h: A \to \omega$ be a function such that $(\forall n \in \omega) h^{-1}(n)$ is infinite.

We will now define $f_a: {}^\omega\omega \to {}^\omega\omega$. Fix $x=\langle x_0,x_1,...\rangle \in {}^\omega\omega$. Let $i_0< i_1<...$ be the sequence of indices listing which numbers x_i are in A. That is, each $x_{i_k}\in A$, but no other x_i is in A. Define

$$f_a(x) := \langle h(x_{i_0}), h(x_{i_1}), ... \rangle$$

If there are only finitely many x_i in A, define $f_a(x)$ to be anything.

Main Theorem (ZF)

Assume there is no injection of ω_1 into ${}^{\omega}\omega$. Let $g:{}^{\omega}\omega\to{}^{\omega}\omega$ be ∞ -Borel, as witnessed by the set of ordinals $C\subseteq \operatorname{Ord}$. For each $a\in{}^{\omega}\omega$,

$$f_a \cap g = \emptyset \Rightarrow a \in L[C].$$

Since L[C] has only countably many reals in it (because $\omega_1^{L[C]}$ injects into $\omega \omega \cap L[C]$), this theorem gives us that AD^+ implies Ψ .

To prove the theorem, fix $a \in {}^{\omega}\omega$ and assume $a \notin L[C]$. Let $A \subseteq \omega$ be the set associated with a such that $a =_T A$ and A is computable from every infinite subset of itself. We will construct an $x \in {}^{\omega}\omega$, by forcing over L[C], such that $f_a(x) = g(x)$.

Let $\mathbb H$ be the poset of all trees $T\subseteq {}^{<\omega}\omega$ with cofinite splitting beyond the stem. We have $T_2\subseteq T_1$ iff $T_2\subseteq T_1$. Define the stronger ordering \leq^A by $T_2\leq^A T_1$ iff $T_2\subseteq T_1$ and

$$(\forall t \in \mathsf{Stem}(T_2) - \mathsf{Stem}(T_1)) \, t(|t|-1) \not\in A.$$

That is, $T_2 \leq^A T_1$ means that $T_2 \leq T_1$ and the part of the stem of T_2 not in the stem of T_1 does not hit A. Idea: If $x \in {}^\omega \omega$ is the generic real being added by \mathbb{H} $(x = \bigcap$ the generic filter), then if $T_2 \leq^A T_1$, then T_2 does not decide any more of $f_a(x)$ than T_1 already does. The main lemma says we can hit dense subsets of \mathbb{H} without deciding more of $f_a(x)$:

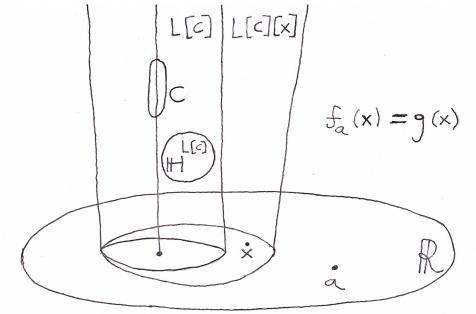
Main Lemma

Let M be an inner model such that $A \not\in M$. Let $U \in M$ be such that $U \subseteq \mathbb{H}^M$ is dense^M in \mathbb{H}^M . Fix $T_1 \in \mathbb{H}^M$. Then there is $T_2 \leq^A T_1$ such that $T_2 \in U$.

- Step 0: Let $\langle U_n : n < \omega \rangle$ be an enumeration of the dense^{L[C]} subsets of $\mathbb{H}^{L[C]}$ in L[C]. Let \dot{x} be the canonical name for the generic real $x \in {}^{\omega}\omega$. Let $T_0 = 1$.
- Step 1:
 - Let $T_0' \leq^A T_0$ be in U_0 .
 - Let $T_0'' \leq^A T_0'$ and $m_0 \in \omega$ be such that $T_0'' \Vdash g(\dot{x})(0) = \check{m}_0$.
 - Let $T_1 \leq T_0''$ have stem 1 longer than T_0'' such that T_1 ensures that $f_a(x)(0) = m_0$.
- Step 2:
 - Let $T_1' \leq^A T_1$ be in U_1 .
 - Let $T_1'' \leq^A T_1'$ and $m_1 \in \omega$ be such that $T_1'' \Vdash g(\dot{x})(1) = \check{m}_1$.
 - Let $T_2 \leq T_1''$ have stem 1 longer than T_1'' such that T_2 ensures that $f_a(x)(1) = m_1$.
- ...
- We have $(\forall i \in \omega) f_a(x)(i) = m_i = g(x)(i)$. Thus, $f_a(x) = g(x)$.

This completes the proof.

Proving Ψ from AD^+ : Picture Summary



Corollary of the theorem

The following follows from the theorem:

Corollary

Assume there is a proper class of Woodin cardinals. Let $g: \mathbb{R} \to \mathbb{R}$ be universally Baire. Then g is disjoint from at most countably many of the functions $f_a: \mathbb{R} \to \mathbb{R}$.

Variant of the theorem

Theorem

Assume there is a proper class of Woodin cardinals. Let $\mathcal U$ be a selective ultrafilter on ω . Let $g:\mathbb R\to\mathbb R$ be in $L(\mathbb R)[\mathcal U]$. Then g is disjoint from at most countably many of the functions $f_a:\mathbb R\to\mathbb R$.

Thus, ZF+ there exists a non-principal ultrafilter on ω is not enough to imply $\neg \Psi$.

Open question

Earlier we showed that ZFC implies $\neg \Psi$. We ask whether the weaker statement Ψ^- is consistent with ZFC:

Definition of Ψ^-

 Ψ^- is the following statement: for each $a \in \mathbb{R}$ there is a function $f^a : \mathbb{R} \to \mathbb{R}$ such that the following hold:

- The function $(a, x) \mapsto f^a(x)$ is Borel.
- $(\forall g : \mathbb{R} \to \mathbb{R}) \{ a \in \mathbb{R} : f^a \cap g = \emptyset \}$ has size $< 2^{\omega}$.

Note: In a model of ZFC + Ψ^- , it must be that CH fails.

Acknowledgments

Paul Larson pointed out the argument that $AC + \operatorname{add}(\mathcal{M}) = 2^{\omega}$ implies there is a size 2^{ω} set of reals that cannot be surjected onto \mathbb{R} by a Borel function. He also explained why $L(\mathbb{R})[\mathcal{U}]$ satisfies the perfect set property, which is used in the proof that $L(\mathbb{R})[\mathcal{U}] \models \Psi$. Trevor Wilson explained the large cardinal steps in the proof that Projective Determinacy implies that every projective $g: \mathbb{R} \to \mathbb{R}$ is disjoint from at most countably many f_a 's.

Thank You!

References

J. Baumgartner and P. Dordal. *Adjoining dominating functions*. The Journal of Symbolic Logic 50 (1985).

A. Blass. *Combinatorial cardinal characteristics of the continuum* in M. Foreman and A. Kanamori, editors, *Handbook of Set Theory*. Springer, NY. (2010).

J. Cummings and S. Shelah. *Cardinal invariants above the continuum*. Ann. Pure Appl. Logic 75 (1995).

D. Hathaway. Disjoint Borel Functions. Ann. Pure Appl. Logic 168 (2017).

J. Steel. Projectively well-ordered inner models. Ann. Pure Appl. Logic 74 (1995).