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The statement Ψ(g)

Claim

For each a ∈ ωω, there is a Borel function fa : ωω → ωω that “encodes a”.
The following are satisfied:

(a, x) 7→ fa(x) is Borel.

Large cardinals imply that if g : ωω → ωω is “nice”, then g ∩ fa = ∅
for only countably many a.

Let Ψ(g) be the statement that g : ωω → ωω is disjoint from only
countably many fa’s.

Dan Hathaway (DU) Disjoint Infinity-Borel Functions Overview November 28, 2017 2 / 11



ZFC implies (∃g)¬Ψ(g)

ZFC + ¬CH easily implies (∃g)¬Ψ(g).

ZFC + CH implies there is a set of reals of size 2ω that cannot be
surjected onto ωω by any Borel function. This implies (∃g)¬Ψ(g).
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∆1
1 Functions

Theorem

Let g : ωω → ωω be ∆1
1(c) for some c ∈ ωω. Then

g ∩ fa = ∅ ⇒ a ∈ ∆1
1(c).

Corollary

Let g : ωω → ωω be ∆1
1. Then Ψ(g).

The proof of the theorem uses forcing (forcing over an arbitrary ω-model
M that contains c but not a to produce M[x ] such that
M[x ] |= g(x) = fa(x). M[x ] understands g because c ∈ M and g is Borel).

There is a “forcing free” proof with the weaker conclusion that a ∈ Σ2
1(c).

No forcing free proofs are known for the other theorems in this talk.
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∆1
2 Functions

Theorem

Let g be ∆1
2(c) for some c ∈ ωω. Then

g ∩ fa = ∅ ⇒ a ∈ L[c].

Corollary

Let g be ∆1
2(c) and assume ωω ∩ L[c] is countable. Then Ψ(g).

Theorem

The following are equivalent:

(∀g ∈ ∆1
2) Ψ(g).

(∀r ∈ ωω)ω1 is inaccessible in L[r ].

(∀g) Ψ(g) holds in the Solovay model.
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∆1
n Functions

Theorem

Assume Projective Determinacy. Let g be ∆1
n(c). Then

g ∩ fa = ∅ ⇒ a is ∆1
n in c and a countable ordinal.

Corollary

Assume Projective Determinacy. Then Ψ(g) holds for every projective
g : ωω → ωω.

On the next slide, we will see that AD+ implies (∀g) Ψ(g). Does AD
alone imply (∀g) Ψ(g)?
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Functions in models of AD+

Theorem (ZF)

Assume there is no injection of ω1 into ωω. Let g be ∞-Borel with code
C ⊆ Ord. Then

g ∩ fa = ∅ ⇒ a ∈ L[C ].

Corollary

AD+ implies (∀g) Ψ(g).

Corollary

Assume there is a proper class of Woodin cardinals. Let g be universally
Baire. Then Ψ(g).
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Functions in Forcing Extensions of L(R)

PSP is the perfect set property.

Theorem

Let Q ∈ L(R) be a forcing such that

There is a surjection of R onto Q in L(R),

(Q adds no reals)L(R), and

(1 
Q PSP)L(R).

Then (1 
Q (∀g) Ψ(g))L(R).

Corollary

Assume there is a proper class of Woodin cardinals. Let U be a selective
ultrafilter on ω. Then L(R)[U ] |= (∀g) Ψ(g).
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Thank You!
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