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Cardinal Characteristics

Definition

A challenge-response relation (c.r.-relation) is a triple 〈R−,R+,R〉 such
that R ⊆ R− × R+. The set R− is the set of challenges, and R+ is the
set of responses. When cRr , we say that r meets c .

Definition

A backwards generalized Galois-Tukey connection (morphism) from
A = 〈A−,A+,A〉 to B = 〈B−,B+,B〉 is a pair 〈φ−, φ+〉 of functions
φ− : B− → A− and φ+ : A+ → B+ such that

(∀c ∈ B−)(∀r ∈ A+)φ−(c)A r ⇒ c B φ+(r).

When there is a morphism from A to B, let us say that A is above B and
B is below A
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Cardinal Characteristics

Picture showing that A is above B:

A− A A+

B− B B+.

φ+φ−

Definition

The norm of a c.r.-relation R = 〈R−,R+,R〉 is

||R|| := min{|S | : S ⊆ R+ and (∀c ∈ R−)(∃r ∈ S) c R r}.

If A is above B, then ||A|| ≥ ||B||.
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Main Question

Let N = ωω be Baire space. ∆1
1 ∩ NN is the set of Borel functions from

N to N . The results in this talk apply also to ∆1
1 ∩ XY where X and Y

are any Polish spaces with X uncountable.

Throughout this paper, let D be the relation of functions being disjoint.
That is, given f , g : N → N ,

f D g ⇔ f ∩ g = ∅ ⇔ (∀x ∈ N ) f (x) 6= g(x).

Main Question

Let R = 〈∆1
1 ∩ NN ,∆1

1 ∩ NN ,D〉.
What is ||R||?
What c.r.-relations are below R?

What if we instead look at ∆1
n ∩ NN for n ≥ 2 (and beyond)?

Dan Hathaway (DU) Disjoint Borel Functions August 31, 2017 4 / 22



Basic Plan

Let R = 〈∆1
1 ∩ NN ,∆1

1 ∩ NN ,D〉.

Let ≺ be an ordering on N such that

(∀r ∈ N ) {a ∈ N : a ≺ r} is countable.

If we can show that there is a morphism from R to 〈N ,N ,≺〉, we will
have that ||R|| = 2ω. What ordering ≺ will work?

a ≺ r ⇔ a ≤T r?

a ≺ r ⇔ a ∈ ∆1
1(r)?

a ≺ r ⇔ a ∈ ∆1
2(r)?

a ≺ r ⇔ a ∈ L(r)?

a ≺ r ⇔ a ∈ ∆1
3(r)?

a ≺ r ⇔ a ∈M1(r)?

...

a ≺ r ⇔ a ∈ HOD(r)?
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The Morphism Functions

Before we figure out which ordering ≺ will work, let us say what the
functions in the morphism 〈φ−, φ+〉 from R to 〈N ,N ,≺〉 will be.

∆1
1 ∩ NN D ∆1

1 ∩ NN

N ≺ N .

φ+φ−

φ+ will simply map a function g to any (Borel) code for g .

φ− will map a real a to the Baire class one (pointwise limit of continuous,
and therefore Borel) function fa ∈ NN which we will define on the next
slide.

This same pair 〈φ−, φ+〉 will also be a morphism from
〈∆1

n ∩ NN ,∆1
n ∩ NN ,D〉 to 〈N ,N ,≺〉 for an appropriate ≺

corresponding to n.
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The Encoding Function fa

Fix a ∈ N . Pick some A ⊆ ω such that A =T a, A is infinite, and A ≤T B
whenever B is an infinite subset of A. Such a set A is easy to construct.
We actually only need A to be ∆1

1 in every infinite subset of itself.

Let h : A→ ω be a function such that (∀n ∈ ω) h−1(n) is infinite.

We will now define fa : N → N . Fix x = 〈x0, x1, ...〉 ∈ N . Let i0 < i1 < ...
be the sequence of indices listing which numbers xi are in A. That is, each
xik ∈ A, but no other xi is in A. Define

fa(x) := 〈h(xi0), h(xi1), ...〉
If there are only finitely many xi in A, define fa(x) to be anything.

The function fa is Baire class one (and therefore ∆1
1).

Fact: no continuous function will work as an encoding function (which
ultimately follows from the fact that the set of well-founded subtrees of
<ωω ordered by inclusion has cofinality d).
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Variant of Hechler Forcing

Given an appropriate ordering ≺ on N , to show that 〈φ−, φ+〉 is indeed a
morphism from R to 〈N ,N ,≺〉 we will perform a forcing argument!!!

Definition

Fix h : <ωω → ω, A ⊆ ω, and t1, t2 ∈ <ωω.

t2 wh t1 iff t2 w t1 and (∀n ∈ Dom(t2)−Dom(t1)) t2(n) ≥ h(t2 � n).

t2 wA
h t1 iff t2 wh t1 and (∀n ∈ Dom(t2)−Dom(t1)) t2(n) 6∈ A.

That is, t2 wh t1 means that t2 is an extension of t1 “to the right” of h,
and t2 wA

h t1 means that additionally t2 does not “hit” A any more than t1

already does.
Given h1, h2 : <ωω → ω, let us write h2 ≥ h1 iff (∀t ∈ <ωω) h2(t) ≥ h1(t).

Definition

H is the poset of all pairs (t, h) such that t ∈ <ωω and h : <ωω → ω,
where (t2, h2) ≤ (t1, h1) iff t2 wh1 t1 and h2 ≥ h1. Given A ⊆ ω, we write
(t2, h2) ≤A (t1, h1) iff t2 wA

h1
t1 and h2 ≥ h1.
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The Main Lemma

Main Lemma

Let M be an ω-model of ZF and U ∈ PM(HM) be a set dense in HM . Let
A ⊆ ω be infinite and ∆1

1 in every infinite subset of itself but A 6∈ M. Then

(∀p ∈ HM)(∃p′ ≤A p) p′ ∈ U.

Note: (∀x , y ∈ N ) x ∈ ∆1
1(y) iff every ω-model M which contains y also

contains x .

Thus, letting M, U, and A satisfy the hypothesis of the lemma, then
defining

S := {t ∈ <ωω : (∃h ∈ M) (t, h) ∈ U},

we have S ∈ M and therefore A 6∈ ∆1
1(S).
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Proof of Main Lemma

We can prove the main lemma by a rank analysis.

Definition

Given t ∈ <ωω and S ⊆ <ωω,

t is 0-S-reachable iff t ∈ S ;

for α > 0, t is α-S-reachable iff t is β-S-reachable for some β < α
or {n ∈ ω : (∃β < α) t_n is β-S-reachable} is infinite.

t is S-reachable iff t is α-S-reachable for some α.

A computation shows the following:

t is S-reachable iff t is α-S-reachable for some α < ωCK
1 (S).

Given α < ωCK
1 (S), the set of all t that are β-S-reachable for some

β < α is ∆1
1(S).

Dan Hathaway (DU) Disjoint Borel Functions August 31, 2017 10 / 22



Proof of Main Lemma

The main lemma follows at once from the following:

Lemma (Reachability Dichotomy)

Fix t ∈ <ωω, S ⊆ <ωω, and A ⊆ ω which is infinite and ∆1
1 in every

infinite subset of itself. Assume A 6∈ ∆1
1(S).

If t is not S-reachable, then

(∃h ∈ ∆1
1(S))(∀t ′ wh t) t ′ 6∈ S .

If t is S-reachable, then

(∀h)(∃t ′ wA
h t) t ′ ∈ S .

The first case follows easily from the fact that if t is not S-reachable, then
only finitely many t_n are S-reachable. For each t that is not
S-reachable, define h(t) to be the smallest n such that (∀m ≥ n) t_m is
not S-reachable. A computation shows that h ∈ ∆1

1(S).
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Proof of Main Lemma

We will sketch a proof of the second case of the reachability dichotomy.
Fix t,S , and A as in that lemma. Assume that t is S-reachable and fix
h : <ωω → ω. We must find some t ′ wA

h t such that t ′ ∈ S .

Assume that t is not 0-S-reachable, otherwise we are already done by
setting t ′ = t. Thus, fix the smallest α > 0 such that t is α-S-reachable.

By induction, it suffices to find some n ∈ ω such that n 6∈ A, n ≥ h(t),
and t_n is β-S-reachable for some β < α. Let

B := {n ∈ ω : (∃β < α) t_n is β-S-reachable}.

B is infinite and B ∈ ∆1
1(S). If B − A is infinite, we can get the desired n.

Now, B − A must be infinite because otherwise B ∩ A =T B and B ∩ A is
infinite, so

A ≤∆1
1
B ∩ A =T B ≤∆1

1
S ,

which implies A ≤∆1
1
S , a contradiction.
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Main Theorem

Main Theorem

Let Γ be the pointclass of all sets defined by formulas in a certain class (so
it makes sense to talk about a Γ-formula).

Let ≺ be an ordering on N such that whenever r , a ∈ N are such that
a 6≺ r , then there exists an ω-model M of ZF such that

r ∈ M;

a 6∈ M;

PM(HM) is countable (in V );

for every forcing extension N (in V ) of M by HM , N can compute the
truth (in V ) of Γ-formulas with the real param r .

Then for any a ∈ N and g ∈ Γ ∩ NN ,

fa ∩ g = ∅ ⇒ a ≺ (any code for g).
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Proof of Main Theorem (from Main Lemma)

Fix a, g , and an arbitrary code r for g . In any model N that contains r ,
let g̃ refer to g ∩ N. Since the forcing extension N we will construct will
compute the truth of Γ-formulas with the real param r , we will have
g̃ ∈ N. Suppose a 6≺ r . Fix an ω-model M as in the hypothesis of the
theorem. Let A ⊆ ω be the set from the definition of fa that is ∆1

1 in every
infinite subset of itself and a =T A. Note that A 6∈ M.

We will construct an x ∈ N satisfying fa(x) = g(x). Let 〈Un : n < ω〉 be
an enumeration (in V ) of the dense subsets of HM in M. Let ẋ be the
canonical name for the generic real added by HM . We will construct a
decreasing sequence of conditions of HM which will hit each Un. The
x ∈ N will be the union of the stems in this sequence (and it will be
generic over M having the name ẋ).
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Proof of Main Theorem (from Main Lemma)

Starting with 1 ∈ HM , apply the main lemma to get p0 ≤A 1 in U0. Then,
apply the main lemma to get p′0 ≤A p0 and m0 ∈ ω such that
(p′0 
 g̃(ẋ)(0) = m̌0)M . Next, extend the stem of p′0 by one to get
p′′0 ≤ p′0 to ensure that fa(x)(0) = m0.

Next, get p′′1 ≤ p′1 ≤A p1 ≤A p′′0 such that p1 ∈ U1, (p′1 
 g̃(ẋ)(1) = m̌1)M

for some m1 ∈ ω, and p′′1 extends the stem of p′1 by one to ensure that
fa(x)(1) = m1. And so on...

The x we have constructed is generic for HM over M. Let N = M[x ]. For
each n ∈ ω we have (g̃(x)(n) = mn)N . Since g̃ = N ∩ g , for each n ∈ ω
we have

g(x)(n) = mn.

On the other hand, for each n ∈ ω we have fa(x)(n) = mn.
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Corollary

Corollary

Fix a ∈ N , Γ, g ∈ Γ ∩ NN , and a code r for g . Assume fa ∩ g = ∅.
Γ = ∆1

1 ⇒ a ∈ ∆1
1(r);

Γ = ∆1
2 ⇒ a ∈ L(r);

Γ = ∆1
3 ⇒ a ∈M1(r);

Γ = ∆1
4 ⇒ a ∈M2(r);

...

Γ = HODL(R) ⇒ a ∈Mω(r);

The first bullet holds because ∆1
1 formulas are absolute between ω-models

and V , and whenever a 6∈ ∆1
1(r), there is some ω-model of ZF which

contains r but not a.

The model M1(r) can compute the truth of every ∆1
3(r) formula in every

forcing extension of size below its bottom Woodin cardinal. See [Steel].
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Restatement of Corollary

Using facts about what reals are in the relevant models, we have the
following:

Corollary

Fix a ∈ N , Γ, g ∈ Γ ∩ NN , and a code r for g . Assume fa ∩ g = ∅.
Γ = ∆1

1 ⇒ a is ∆1
1 in r ;

Γ = ∆1
2 ⇒ a is ∆1

2 in r and a countable ordinal;

Γ = ∆1
3 ⇒ a is ∆1

3 in r and a countable ordinal;

...
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ZFC proof for projective functions?

Question

Does ZFC prove that for every a ∈ N there is some projective f ′a ∈ NN
and for every projective g ∈ NN there is some countable G (g) ⊆ N such
that (∀a ∈ N )(∀g ∈ NN projective),

f ′a ∩ g = ∅ ⇒ a ∈ G (g)?

Perhaps this is the wrong question to ask.

Question

Does ZFC prove the statement in the above question but with the
additional requirement that the function (a, x) 7→ f ′a(x) is projective?

No. It is false in any model in which there is a projective well-ordering of
N and ω2 ≤ b.

Dan Hathaway (DU) Disjoint Borel Functions August 31, 2017 18 / 22



Arbitrary functions?

Question

Does ZFC + large cardinals imply that for every a ∈ N there is some
f ′a ∈ NN and for every g ∈ NN there is some countable set G (g) ⊆ N
such that (∀a ∈ N , g ∈ NN )

fa ∩ g = ∅ ⇒ a ∈ G (g)?

No. This is false assuming ZFC + ¬CH: Given A ⊆ N of size ω1,
consider {f ′a : a ∈ A}. There must be a g ∈ NN disjoint from each f ′a for
a ∈ A. However, it cannot be that A ⊆ G (g). If (a, x) 7→ f ′a(x) is Borel,
the statement is also false assuming ZFC + CH using a diagonalization
argument.
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Arbitrary functions for encoding subsets of N ?

Question

Does ZFC + large cardinals imply that there is some λ < 2c and for every
A ⊆ N there is some f ′A ∈ NN and for every g ∈ NN there is some set
G (g) ⊆ P(N ) of size λ such that (∀A ⊆ N , g ∈ NN )

f ′A ∩ g = ∅ ⇒ A ∈ G (g)?

No. This cannot hold in any model in which both b = d = c and
cf〈cc,≤〉 < 2c, and this can be forced by a small poset.

This contrasts with the situation for the everywhere domination relation ≤
of functions from N to ω. Fact: for each a ∈ N there is a Baire class one
f ′a : N → ω such that whenever g : N → ω is any function satisfying
f ′a ≤ g , then a is ∆1

1 definable using g as a predicate. Also, for each
A ⊆ N there is an f ′A : N → ω such that whenever g : N → ω is any
function satisfying f ′A ≤ g , then A is ∆1

1 definable using g as a predicate.
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Thank You!
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