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CHAPTER I

Introduction

Within this chapter, we will summarize the results of this thesis. We will also
provide the main definitions needed to understand the results. We will be using
standard notations from set theory, although we will remind the reader of some ba-

sic definitions.

1.1 The Overall Program

A fundamental problem in infinitary combinatorics is to compute the cofinality of

partially ordered sets (posets):

Definition I.1. Given a poset P = (X, <), aset A C X is cofinal in P if

(Ve X)(Fae A)x <a.

The cofinality of P is defined as

cf P := min{|A| : A C X is cofinal in P}.

We abuse terminology by calling (X, <) a poset whenever < is a binary relation
that is reflexive and transitive. That is, we do not insist on antisymmetry, so what

we call posets should technically be called pre-ordered sets. A cofinal subset of a



poset is also sometimes called a dominating family. Given two subsets A, B of a
poset, we say that B dominates A if (Va € A)(3b € B)a < b.
As an example of why we would want to compute the cofinality of a poset, it is

true that for any infinite cardinals \ and &,
Xe = 2% (A, ©)

where [\]" is the set of all size k subsets of A. The laws of cardinal exponentiation
are not fully understood, and computing the cofinality of ([A]*, C) turns out to be
a useful way to compute \*. The study of the cofinalities of partially ordered sets
is fundamental to Shelah’s PCF Theory ([41], [4], [23]), which is a powerful tool for
proving results about cardinal exponentiation.

Let w be the set of natural numbers (otherwise known as the first infinite ordinal,
which is also the first infinite cardinal Ry). Let w; be the set of countable ordinals
(otherwise known as the second infinite cardinal, the first uncountable cardinal X, ).
Let 2¥ be the cardinality of R (the first ordinal which can be bijected with R).
A ubiquitous partially ordered set is the set of functions from w to w ordered by

everywhere domination:

f<g:e (Vrew) f(x) <g(x).

The cofinality of this poset is denoted 0, the dominating number. It is consistent with
ZFC that w; < 0 < 2¥. This number arises naturally in various contexts. For an
exposition of this and related cardinals, see [2]. A closely related poset is (“w, <*),

where “w is the set of functions from w to w and <* is defined as follows:

f<r g (Vo) f(n) < g(n).

By (V*°n) we mean “for all but finitely many n”, and by (3°°n) we mean “there exist

infinitely many n”. It is not hard to see that cf (Yw, <*) =0.



More generally, given infinite cardinals A and s, one can consider the poset of

functions from A to x ordered by everywhere domination:

f<ge (Voel)fz) < glo).

We denote this poset by (*x,<). If we only care about the cofinality of this poset,
then without loss of generality  is a regular cardinal and £ < A. Computing this
cofinality turns out to be highly problematic. It is currently unknown whether ZFC
proves cf (“'w, <) = 2¢*. One might conjecture cf (*x, <) = 2* whenever x < A, but
this is false when there exists a real-valued measurable cardinal [43]. However, if
A = \, then cf (*x, <) = 2*. This follows from the classical result (see the end of
Chapter 3 of [5]) that when \* = A, there exists a sufficiently independent family of
2* functions from \ to k.

The first instance of the equality \* = X is when A = 2 and k = w. In this
situation, we might as well be studying the poset of functions from R to w ordered
by everywhere domination. The cofinality of this poset is 22, but there is more
detailed information we might want to know. For example, if we restrict our attention
to those functions which are Borel, will the cofinality still be as large as possible?
Answering such a question requires us to develop new techniques. These techniques
in turn yield results which are interesting in their own right, such as the following:
for each A C R, there is a function f : R — w such that if g : R — w everywhere
dominates f, then A € L(R, g). The class L(R, g) is the smallest transitive model of
ZF containing all the ordinals, R, and g.

This thesis explores the following idea: we may show that the cofinality of a poset
(X, <) is large by showing that information can be “encoded” into elements of X
in such a way that information can also be decoded from any larger elements in

X. That is, we may show that cf (X, <) is large by proving an appropriate “infinite



coding theorem”. We will explain with an example:

Let X be the set of all functions from R to w, and let < be the everywhere
domination ordering. Suppose Alice has a message A C w which she wants to send
to Bob. There exists a way that Alice can “encode” A into a Baire class one (and
therefore Borel) function f4 : R — w. Alice wants to give Bob the function f4, but
instead an enemy steps in and substitutes a function g : R — w, which everywhere
dominates f,4, and gives this to Bob instead. There is no way that Bob can uniquely
recover the original message. This is because if A; and A, are two different messages,
and f4, and fa, are encoding A; and A, respectively, then the enemy can create the
function g defined by g(x) := max{fa,(x), fa,(x)}. Given g, Bob has no way of
knowing whether A; or Ay was the original message. However, Bob can guess A by
making only countably many guesses. Specifically, A will be one of the (countably
many) sets which are A} definable using a predicate for g. This is a prototypical
example of a result we will prove.

This thesis is organized according to this theme of coding. We will analyze various

situations and determine whether or not such coding results exist.

1.2 Generalized Galois-Tukey Connections (Morphisms)

Before we discuss Galois-Tukey connections, let us define another important con-
cept relevant to the study of posets:
Definition I.2. Given a poset P = (X, <), a set A C X is unbounded in P if
(Ve e X)(Fae€ A)a L x.
The bounding number of P is defined as

bP:= {|A] : A C X is unbounded in P}.



A set which is not unbounded is bounded. Sometimes the cofinality cfIP of a poset
P is denoted 0 P and is called the dominating number, to accompany the terminology
for the bounding number.

The class of all partially ordered sets can itself be (pre)ordered by the Tukey

ordering:

Definition I.3. The poset P = (P, <p) is Tukey above the poset Q = (Q, <g) if

there exists a pair (¢_, ¢4 ) of functions such that ¢_ : Q — P, ¢, : P — @, and

(Vg € Q)(Vp € P)[o—(q) <pp=q<q ¢+(p)].
The pair (¢_, ¢ ) is called a Galois-Tukey connection from P to Q.

When both P is Tukey above Q and Q is Tukey above P, we say that P and Q
have the same Tukey type, although we will not need this definition. When (P, <p)

is Tukey above (Q), <g), we may depict this using a diagram as follows:

P <p P

o

Q <0 Q.
Moreover, when this is witnessed by the Galois-Tukey connection (¢_, ¢, ), we may

depict this by labeling the appropriate arrows in the diagram:

P <p P
i1
Q <0 Q.

It turns out that the following are equivalent for posets P = (P, <p) and Q =

(@, <q):

1) P is Tukey above Q;



2) There exists a function f : P — @ which maps sets cofinal in P to sets cofinal
in Q;
3) There exists a function ¢ : @ — P which maps sets unbounded in Q to sets

unbounded in P.

If (g, f) is a Galois-Tukey connection that witnesses that P is Tukey above Q,
then f witnesses that 2) is true, and g witnesses that 3) is true. If f witnesses that
2) is true, then there exists a g such that (g, f) witnesses that P is Tukey above Q.
An analogous statement can be made for 3). Calling a Galois-Tukey connection from
P to Q a morphism from P to Q, we have that the class of posets forms a category.
This is sometimes called the Tukey category. In this thesis, when we talk about a
morphism from one poset to another, we mean this notion.

As an example, if Kk < A\ < Ay, then there is a morphism from (M5, <) to (M, <).
However, if k1 < kg < A, there is no obvious reason why there should be a morphism
in either direction between (*x1, <) and (*ky, <).

The existence of a morphism from P to Q gives us useful information. Most

importantly, we have the following:

Observation 1.4. If there is a morphism from P = (P, <p) to Q = (Q, <g), then
1) cfQ < cfPy;
2) bP < bQ.

In the next section, we will see a few more consequences of the existence of a
morphism. Let us give a classical example of the existence of a morphism. Recall

that Al NP (w) is the set of hyperarithmetical subsets of w. As a consequence of [28]



and [42], there exists a morphism from (Al N“w, <) to (Al NP(w), <r):

Al new < Al New
AlNPw) <r Al NP(w).

We will describe this morphism in Section 2.8. The relation <7 is Turing reducibility,
also called relative recursiveness. That is, a <7 b iff a is computable by a Turing
machine which uses b as an oracle.

This is an example of a connection between the domination relation and com-
putability theory. In this thesis, we find more connections of this sort.

What we have said can be generalized beyond posets to challenge-response rela-

tions:

Definition 1.5. A challenge-response relation is a triple (R_, Ry, R) such that R C
R_ x R,. The set R_ is the set of challenges. The set R, is the set of responses.

When cRr, we say that r meets c.
There is the appropriate generalization of Galois-Tukey connection:

Definition I.6. Given the challenge-response relations A = (A_, A, A) and B =
(B_, By, B), we call (¢_,¢.) a generalized Galois-Tukey connection from A to B if

¢op_:B_—A_, ¢, AL — By, and
(Vb€ B_)(Va € Ay) ¢p_(b)Aa = bBo(a).

As before, we may depict that (¢_, ¢, ) is a generalized Galois-Tukey connection

by the following diagram:



Also as before, the class of challenge-response relations forms a category with gen-
eralized Galois-Tukey connections as the morphisms. In this thesis, when we talk
about a morphism from one challenge-response relation to another, we mean this
notion.

The analogue of the cofinality of a poset is the norm of a challenge-response

relation:

Definition 1.7. Given a challenge-response relation R = (R_, Ry, R), aset A C R,
is adequate for R if

(Vx € R_)(da € A) zRa.

The norm of R is defined as
[|R|| := min{|A| : A C R, is adequate for R}.

Every poset (P, <p) can be viewed as a challenge-response relation (P, P, <p).
We have that cf (P, <p) = |[(P,P,<p)||. A morphism between posets is also a
morphism between the corresponding challenge-response relations. Because of this,
we will sometimes blur the distinction between the poset (P, <p) and the challenge-
response relation (P, P, <p). For an exposition of the theory of challenge-response
relations, see [2]. Our reason for considering challenge-response relations instead of
just posets is simple: finding the right challenge-response relation can help compute
the cofinality of a poset.

There is also the notion of the dual of a challenge-response relation. That is,
given R = (R_, R,, R), the dual of R is the relation R+ = (R,, R_, ﬂ}?>, where
R is the converse of R. If (¢_,¢$,) is a morphism from Ry to Rs, then (¢, ¢_)
is a morphism from Ry to Ri. If a challenge-response relation is a poset, then its

bounding number equals the norm of the dual challenge-response relation.



1.3 Scales and Unbounded Chains

Some structures which help us understand posets are scales and unbounded chains:

Definition I.8. Given a poset P = (P, <p) and a sequence S = (s, : @ < k) that is

<p-increasing, we call S a scale in P if

(Va € P)(38 < k) a <p sg,

and we call S an unbounded chain in P if

(Vb e P)(Ja < K) so £p b.

Of course, every scale is also an unbounded chain (assuming there is no maximal
element of the poset). Also, every unbounded chain has a cofinal subsequence of
length a regular cardinal, and such a cofinal subsequence is also unbounded. For
this reason, when we consider an arbitrary unbounded chain, we will often assume
its length is a regular cardinal.

A poset P need not have a scale. It is straightforward to show that P has a scale
iff the bounding number of P equals the cofinality of P. On the other hand, P does
have an unbounded chain of length the bounding number of P (and there are no
shorter unbounded chains). In general, the set of all lengths of unbounded chains in
a poset can be complicated.

When a poset P has an unbounded chain of length r, there is a morphism from

P to (k, <):

Observation 1.9. IfP = (P, <p) is a poset and (s, : a < k) is an unbounded chain
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in P, then there is a morphism (¢p_, ¢.) from P to (k,<):

P <p P
¢>T ﬂ i¢+
K < K.
Proof. Let ¢_ : kK — P be defined by
(b_(Oé> = Sa,
and let ¢, : P — k be defined by
¢+ (b) :=min{a < Kk : 54 Lp b}. O

When the unbounded chain is also a scale, there is a morphism in the opposite

direction:

Observation 1.10. If P = (P, <p) is a poset and (s, : @ < k) is a scale in P, then

there is a morphism (Y_, 1) from (k, <) to P:

K < K
¢—T ﬂ lm
P <p P.

Proof. Let v_ : P — k be defined by
Y_(a) :==min{f < k : a <p sz},
and let ¢, : Kk — P be defined by
V4 (B) = sa. ]

These two observations make precise the idea that if P has a scale of length x,
then numerous questions about P can be reduced to questions about the cardinal k.

Unfortunately, the posets we will study will generally not have scales.
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1.4 The Baire Hierarchy

There is a natural hierarchy on the set of Borel functions called the Baire hierarchy.

Before defining this hierarchy, recall the following:

Definition I.11. A topological space is Polish if it has a countable dense subset and

its topology is that of a complete metric space.

Examples of Polish spaces include R with the usual topology and w with the
discrete topology. Another important example is Baire space, which is the set “w of

functions from w to w with the topology generated by the sets of the form
{z € “w:2(0) = ng, ..., x(k) = ng}

for some finite sequence (ny,...,nx). Equivalently, the topology is induced by the

metric

o—min{n+L:z(n)#Zy(n)} if o 7& Y,
d(v,y) =
0 otherwise.

For technical reasons, many of the results will involve Baire space instead of an
arbitrary Polish space. All Polish spaces are somewhat similar to Baire space. For
example, for each Polish space X, there is a continuous surjection from Baire space to
X. See [30] for the precise relationship between Baire space and other Polish spaces.
Our choice for focusing on Baire space is to keep the exposition simple. We may
confront the fundamental issues at hand without getting sidetracked by generalities.
In the few places where using Baire space as opposed to an arbitrary Polish space

makes a difference, we will say so. We will now define the Baire hierarchy.

Definition I.12. Fix a Polish space Y. By(Y) is the set of continuous functions

from “w to Y. For « satisfying 1 < a < wy, B,(Y) is the set of functions which are
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pointwise limits of sequences of functions in s, Bs(Y). Functions in B,(Y) are

called Baire class a.. Finally, B, (Y) := U4, Bs(Y)

It is well known (see [30]) that a function f : “w — Y is Borel iff f € B,(Y) for
some o < wy. Hence, B, (Y) is the set of Borel functions from “w to Y. For each
a < w, there are two partially ordered sets (B, (w, <) and B, (“w, <*)) whose study

will guide the results of this thesis:

Definition 1.13. Given a Polish space Y and a partial ordering < on Y, B, (Y, <)
is the set B, (Y') ordered pointwise by <. We will denote this partial ordering by the

same symbol <, so (Vf, g € B,(Y))

f<g< (Vre“w) f(x) < g(x).
We make a similar definition for considering arbitrary functions:

Definition I.14. Given a set Y and a partial ordering < on Y, All(Y, <) is the set
AIl(Y') of all functions from “w to Y ordered pointwise by <. We denote this partial

ordering by the same symbol <.

We will see that while our techniques to compute cf B, (w, <) can also be applied
to compute cf All(w, <), this is not the case when passing from cf B, (“w, <*) to

cf All(Yw, <*).

1.5 The Results of this Thesis

The results of this thesis can be broken into two categories: combinatorial set the-
ory and descriptive set theory. While the guiding problem is to compute cf B, (w, <)

and cf B, (“w, <*) for all @ < wy, during this process it is natural to consider appli-
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cations to combinatorial set theory.

1.5.1 Combinatorial Set Theory

In Chapter II we will summarize past work relevant to generalized domination.
This is mostly combinatorial set theory. Starting with Chapter III, all the results
are new. We will discuss the relationship between (*«1, <) and (*9, <). This turns
out to be surprisingly subtle. We will also prove that when A is a singular strong
limit cardinal and k < A, then cf (*x, <) = 2*.

In Chapter V, when we develop some of our main coding theorems, we will prove

the following:

Proposition 1.15. Let k and X\ be infinite cardinals. For each A C X, there is a
function f : "\ — Kk such that whenever M is a transitive model of ZF satisfying

"X € M and some g : "\ — Kk in M everywhere dominates f, then A € M.

We can remove the requirement that *\ € M and replace it with the requirements
that kK = w and A € M (and therefore <*A C M). Hence, in a certain situation, we
may remove the requirement that *A\ € M, and this is very important. The proof of
this special result uses the fact that well-foundedness of trees is absolute, and does
not immediately generalize to the case that x > w. With this special result, we

obtain a surprising fact about complete Boolean algebras:

Theorem 1.16. Let \ be an infinite cardinal. Let B be a complete Boolean algebra.

If B is weakly (N, w)-distributive, then B is (X, 2)-distributive.

By B being weakly (u, x)-distributive, we mean that when forcing with B, func-
tions from p to k in the extension are everywhere dominated by functions from pu

to k in the ground model. There is a more algebraic characterization of both dis-
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tributivity and weak distributivity which we will describe in Section 2.9. We may
replace the component of the proof that uses the fact that well-foundedness of trees
is absolute with a different absoluteness result concerning the existence of length x

paths through subtrees of “A. We get the following variation of the theorem above:

Theorem 1.17. Let k be a weakly compact cardinal. Let B be a complete Boolean
algebra. If B is weakly (2", k)-distributive and is («,2)-distributive for each o < k,

then B is (k, 2)-distributive.

It is important that x is weakly compact, and not just that s has the tree property.

Another variation along these lines is the following;:

Theorem 1.18. Let B be a complete Boolean algebra. If B is weakly (2%, w,)-

distributive, B is (w, 2)-distributive, and 1 IFg (w1 < t), then B is (wy, 2)-distributive.

The cardinal t is the tower number, which we will define in Section 5.6. The
requirement that 1 IFg (w; < t) cannot be removed in the sense that if there exists a
Suslin tree, then there is a complete Boolean algebra which is simultaneously weakly

(2¥1) wy )-distributive and (w, 2)-distributive but is not (wy, 2)-distributive.

1.5.2 Descriptive Set Theory

As stated before, the guiding problem of this thesis is to compute both cf B, (w, <)
and cf B, (Yw, <*) for all & < wy. This will require us to develop new techniques,
which we will then apply to prove some diverse and surprising results. These posets
are interesting in their own right, but the original motivation for studying B,,, (“w, <*)
was to provide insight into the notion of Borel boundedness ([3], [45]) which appears
in the theory of Borel equivalence relations on “w all of whose equivalence classes

are countable. We hope that our techniques may have applications there. Also, we
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chose to investigate B, (“w, <*) instead of B,(“w, <) for some other ordering < on
“w because <* is concrete and it captures the main idea for any reasonable <. Our
final result (Theorem 1.27) can be viewed as applying to any reasonable < because

it applies to the weakest relation: non-equality of reals.

Observation 1.19. For each o < wy,

0 < cfBy(“w, <) < cf By(w, <) < 2%,

Proof. Fix a < w;. By mapping functions from “w to “w to their value at some fixed
point, and by mapping an element of “w to the corresponding constant function, we

easily get a morphism from B, (“w, <*) to (“w, <*). By Observation 1.4,

0 < cf By (Yw, <*).

Next, by partitioning “w into blocks of size w, we see that each function in B, (w) cor-
responds to a function in B, (“w). It is important that this correspondence respects
the levels of the Baire hierarchy, but this is routine to verify. With this correspon-
dence, we see that there is a morphism from B, (w, <) to B,(“w, <). This implies

there is a morphism from B, (w, <) to B, (“w, <*), so by Observation 1.4,

cf By (Yw, <) < cf By (w, <).

Finally, |B,(w, <)| < 2, so of course cf B, (w, <) < 2. O

There is no reason a priori for there to be any relationship between the cofi-
nalities of the posets B, (w, <) for varying o < w;. The same can be said for the
posets B, (“w, <*) for varying o < w;. We will separate the discussion of the posets

B, (w, <) from the discussion of the posets B, (“w, <*).



16
1.5.3 Functions from “w to w

In Chapter III, we will show that the classical proof to produce large indepen-
dent families of functions can be arranged to produce Borel functions. This implies
cf By (w, <) = 2¢ for all but very small a < w. However, this observation sheds no
light on B, (“w, <*).

In Chapter IV, we will show
cf By(w, <) = 0.

This implies that an arbitrary A C w cannot be encoded into a continuous function
f :“w — w so that A can be guessed from a dominator of f using countably many
guesses. The “reason” why cf By(w, <) = 0 is the following more combinatorial result,

which we will prove:

Theorem 1.20. Let W be the set of well-founded subtrees of <“w. Then
(W, C) =0o.

This in turn follows from the existence of a morphism from a challenge-response
relation, which will easily be seen to have norm 9, to (W, C). That morphism gives

us another interesting application:

Theorem 1.21. Let M be a transitive model of ZF. Assume that
(\V/fl < “’w)(ﬂfg eE“wnN M) f1 < fg.

Assume also that w, = (wl)M. Then for each well-founded tree Ty C <“w, there is

some well-founded tree Ty C <“w in M satisfying Ty C Ts.

Unfortunately, to show By(w,<) = 9, it is important that By(w) is the set of
continuous functions from “w to w, as opposed to the set of continuous functions

from some other Polish space X to w.
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In Chapter V, we will see a sharp transition as we pass from continuous func-
tions to Baire class one functions. We will present a novel technique for computing
cfBy(w, <) for all & > 1. The technique will have significant applications, such
as the implications between weak distributivity laws for complete Boolean algebras.
Computing cf B, (“w, <*) for a > 1, on the other hand, will be of an entirely different
nature. As the inclusion ordering on trees was the key to understanding continuous
functions, the inclusion ordering on clouds turns out to be the right way to under-
stand Baire class one functions and beyond. We will quickly develop the theory of

clouds, and using them we will show that for each av > 1,

We will establish this by constructing, for « > 1, a morphism from B, (w, <) to
(P(w), <a1):
Ba(w) < Ba(w)

T

P(w) <Al P(w).
The same morphism works for each a > 1. By <a1, we mean that A <a! B ift A
is definable by a Al formula using B as a predicate. When A < al B, we say that
A is hyperarithmetical in B. We use the same definition even if instead B is a type
2 object, such as a function from “w to “w. We make similar definitions for other
classes, such as A} and 3?. The following gives us the desired morphism (and much

more):

Theorem 1.22. For each A C w, there is a function f € Bi(w,<) such that if

g:%w — w is any function satisfying (Vo € (“w)H9) f(z) < g(x), then A <al g

The set A is not only Al definable using g as a predicate, but we can arrange f
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so that there exist nodes t1,ts € <“w satisfying the following:
A = {new: VeIt n)g(x) > |t nl},
w—A = {new: (Ve Idt3n)g(x) > |t3 nl}.

We may view this as an infinite coding result. This is precisely what we described
in the first section: Alice wants to send A C w to Bob. She encodes A into the
Baire class one function f : “w — w. She tries to send f to Bob, but instead an
enemy steps in and substitutes a function g : “w — w which everywhere dominates
f. Given g, Bob can guess A by making countably many guesses: he simply guesses
each subset of w that is definable by some Al formula which uses g as a predicate.
We discuss two encoding techniques: horizontal coding and wvertical coding. The
theorem above can be proved using either one. We will see that the two techniques
have different useful generalizations, so we must study both. We will analyze exactly
how sloppy we can be to still perform vertical coding. The following is an example

of that analysis:

Proposition 1.23. Let a € R be a real. Let f : R — R be the function

x—ia if x # a,
flz) =
0 if x = a.
If g : R — R is a function which everywhere dominates f, then a € L[g]. Hence, if

g is also Borel, then a € L|c| where ¢ is any Borel code for g.
In this proposition, the relation “a € L[g]” is replacing the “A <1 g” of the
theorem above, but this is not essential. Using horizontal coding, we will prove the

following:

Proposition 1.24. For each A C “w, there is a function f : “w — w such that

whenever g : “w — w is any function satisfying f < g, then A is Al in g.
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By Al we mean definable by a Al formula using g as a predicate and some real

as a parameter. The proposition implies the following:

Corollary 1.25. For each A C R, there is a function f : R — w such that if

g: R — w satisfies f < g, then A € L(R, g).

1.5.4 Functions from “w to “w

In Chapter VI, we will discuss various obstructions to computing the cofinality
of B,(“w,<*) for a > 1. We also establish various limits to what kinds of infinite
coding theorems can exist. First, we show that if we consider the poset All(“w, <*)
of all functions from “w to “w (instead of just the Borel ones) ordered by pointwise
eventual domination, then there is no way in ZFC to prove that an arbitrary subset
of R can be encoded into one of these functions. This contrasts with the situation
with All(w, <), because a result like Corollary 1.25 shows that encoding of arbitrary
subsets of R into that poset is possible. In essence, the problem with All(“w, <*) is
that there might exist a scale in (“w, <*) of length 2. A scale, however, is an object
whose existence requires some amount of the axiom of choice, and it is not relevant
when we investigate B, (“w, <*) for o < wy.

Next in Chapter VI, we will establish that some naive attempts using vertical
coding to show cf B, (Yw,<*) = 2% (for a > 1) fail. To prove the failure of the
techniques, we will use Sacks forcing. Our reason for spending the energy to do this
is because we want to be sure we have the simplest encoding scheme possible. As we
will see in Chapter VII, an encoding scheme does exist, but the proof that it works is

very complicated and was time consuming to discover. We do not want the readers
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to waste time exploring paths on their own that we know lead to dead ends.

Next in Chapter VI, we observe that if we consider projective (instead of just
Borel) functions from “w to “w ordered by pointwise eventual domination, then
arbitrary subsets of w cannot be encoded into these functions (in a canonical way)
assuming the following: 1) there is a projective well-ordering of “w, and 2) ws < b.
Since it is consistent with ZFC that these conditions may be satisfied simultaneously,
we have that ZFC cannot prove an infinite coding theorem for projective functions
from “w to “w. This leaves open the question of whether further natural axioms (for
example, the axiom of projective determinacy) imply a coding theorem for projective
functions.

In Chapter VII, we establish that for each a@ > 1,

cf By (Yw, <*) = 2%,

We start the chapter by illustrating what was lacking from the naive vertical coding

attempt of the previous chapter. We then present a proof that

of By (“w, <) = 2¢

using techniques entirely different from those in Chapter V. However, still as be-

fore, we will prove this by constructing a morphism from B;(“w, <*) to the relation

(Pw). <ap):
Biw) < Bitw)
I
Pl)  <a  Plo)

Next, the challenge becomes to show that

cf By (Yw, <) = 2%,
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Ultimately, this requires us to clarify the argument for B;(“w,<*) and develop a
more powerful technique. We isolate the right statements to prove using induction
to handle B, (“w, <*) for a < w;. This will give us, for each « satisfying 1 < o < wy,

a morphism from B, (“w, <*) to (P(w), <ay):

B, (“w) < B.(“w)

IR

P(w) <a P

Indeed, it suffices to construct the following morphism:

B (“w) < B, (“w)
I
P(w) <Al P(w).

The existence of this follows from the next theorem. The reason for A} is because

of the complexity of the graph of the function ¥ used in the proof:

Theorem 1.26 (Borel Dominator A} Coding Theorem). For each A C w, there is
a Baire class one function [ :“w — “w such that whenever g : “w — “w 1s a Borel
function satisfying

(Ve € “w)(3e € w) f(@)(0) < g(a) o)

then A is A in any code for g.

We have now completed our quest to compute B, (w, <) and B, (“w, <*) for all
a < wy. We can now justify that our choice of considering <* instead of some other

relation on “w did not matter. The theorem above involves the relation

(3c € w) f(z)(c) < g(z)(c)

between f(x) and g(x). The proof generalizes easily to handle any reasonable relation

R between f(z) and g(z). Specifically, all we need is for R C “w x “w to be any
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relation such that there exists a continuous function j : “w — “w satisfying

(Vy € “w) —j(y)Ry.

Fixing such an R, the generalization may be stated as follows: for each A C w, there
is a Baire class one function f : “w — “w such that whenever ¢ : “w — “w is a Borel
function satisfying

(Vo € “w) f(x)Rg(x),

then A is A} in any code for g.

Essentially all relations studied in the area of cardinal characteristics of the con-
tinuum (are equivalent to relations which) satisfy this hypothesis. There is a weakest
relation out of all these: non-equality. We now have a remarkably strong result with
an analysis flavor. We can use an arbitrary Polish space X instead of “w, at the cost

of perhaps slightly increasing the complexity of f:

Theorem 1.27. Let X andY be Polish spaces with X uncountable. For each A C w,
there is a Borel f : X — Y such that whenever g : X — Y 1is Borel, then at least

one of the following holds:

1) (Jz € X) f(z) = g(z);
2) A is AL in any code for g.

The strength of this result is a testament to the underlying method. The devel-
opment of the method is by far the deepest contribution of this thesis.

We leave the reader with a puzzling question: can Theorem [.27 be generalized
to work when g is a projective function? By the observation that there can exist
a long projective well-ordering of the reals while simultaneously w, < b, we cannot

expect ZFC to prove such a generalization. We may ask whether it follows from
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projective determinacy or the existence of large cardinals. If so, this would likely
require inventing a different proof of Theorem 1.27, which is no easy task.

Finally, in the appendix we will present a few lemmas about Sacks forcing which
we use. We will also present several ideas which, although they were not used in this

thesis, are still natural for tackling problems in the area of cardinal characteristics.

1.6 Notation

In addition to what we have defined in this introduction, within this section we
will fix the rest of the notation for this thesis. With very few exceptions, we will
use standard set theoretic notation and terminology. When we say cardinal, we will
always mean infinite cardinal. By antichain, we mean strong antichain (elements are
pairwise incompatible). We write a L b when a and b are incompatible. The reader
should have basic familiarity with forcing, including nice names. Given two sets X
and Y, XY is the disjoint union of X and Y. Given a set X and a cardinal x, [X]*

is the collection of size k subsets of X, and [X]<" is the collection of size < k subsets

n
v

of X. By A-tree, we mean a tree all of whose levels have size < A\. By yu — (k)
we mean the standard partition relation (given any coloring of [x|™ using v colors,
there is a homogeneous subset of x of size u). By MA, we mean Martin’s axiom (the
version consistent with CH).

When we say that A C w is [T} in a set B, we mean that membership in A is
determined by a I} formula which uses B as a predicate. We say that A is Al in
B if both A and w — A are I} in B. We use a similar definition for A being Al
in B. By <7, we mean Turing reducibility. These are the only recursion theoretic

definitions we will need.
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We will use a number of concepts from descriptive set theory. We will use codes
for Borel and projective sets. The theory of such codes can be found in [30] and
[39]. The point is that Borel sets, and more generally projective sets, can be coded
by individual real numbers, and properties of the sets can be reduced to properties
of the reals which code them. From a real which codes a Borel set, the process by
which the set is built up in the Borel hierarchy may be recovered. By AD we mean
the axiom of determinacy. © is the smallest ordinal which R cannot be surjected
onto. We use w.s. as an abbriviation for winning strategy.

Whenever we say cardinal, we shall mean infinite cardinal. Given sets A and B, let
4B denote the set of functions from A to B. As usual, given a function f: X — Y,
we write Dom(f) = X for the domain of f, Im(f) C Y for the image of f, and given
S C X, f ]S is the restriction of f to S. Given S C Dom(f), we write f“(S) for

Im(f [ S). Given an expression e(z) which depends on x, we write
x — e(x)

for the function which given x returns e(x). By a sequence, we mean a function whose
domain is an ordinal. The expression (a, b, ¢) denotes the sequence which maps 0 to
a, 1 to b, and 2 to ¢. Given an ordinal x and a set X, let <*X be the collection of
all functions whose domain is a proper initial segment of x:

X=X

a<k
Given two sequences t and s, we write ¢t C s if s is an end-extension of ¢. That is,

t Csiff s [ Dom(t) =t.

Given two sequences t and s, we write ¢t~ s for the concatenation of £ and s. Given

t € <X and a € X, we may abuse notation and write t~a when we mean ¢t~ (a).
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A set T C <" X is a tree if it is closed under taking initial segments. Elements of
T we generally call nodes. We call () the root of T' (assuming 7' is non-empty). Nodes
which have no proper end-extensions in 7" we call leaf nodes. We write [T'] C *X for

the set of all length x paths through 7T
{re"X: Va<r)zaeT}.

Of course, this definition depends on x, but it will always be clear from context what
we mean. Given t € <“w, we write [t] for the set of all x € “w satisfying x J ¢. Given
xr € “w, we write [[z]] for the set of t € ““w satisfying t C x (this is not standard

notation). Given a < k, the a-th level of T' is the set
TNeX.
The height of T is
sup{a < k: TN*X # 0}

Given t € T', we define
Sucer(t) :={a€e X :t"ae T}

If kK = w, we say that T is well-founded if it has no infinite paths. If T is well-founded

then to each t € T' we may assign a rank rank(7',t) as follows:

1 if ¢ is a leaf node of T,
rank(7,t) :=

sup{rank(7,t"a) +1:a € Succy(t)} otherwise.

Note that we are using the convention that leaf nodes of T" have rank 1, which allows
us define the rank of those t € <“X not in T" to be 0. The rank of the tree T itself

we define to be the rank of the root:

rank(7") := rank(T, ().
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The following definitions will help us define functions which are difficult to every-

where dominate.

Definition I.28. Let X be a set and & be a cardinal. Let T' C <*X be a tree. The
function Exit(7T") : "X — k is defined by

0 if = € [T,
Exit(T)(z) :=

min{a:x [« € T} otherwise.
That is, Exit(7")(z) is the level at which x ezits the tree T' (and is 0 if = does not

exit the tree). A more general definition is the following:

Definition 1.29. Let X be a set and s be a cardinal. Let C C <fX be such
that for each x € "X, {a« < kK : 2 | @ € C} is bounded below . The function

Rep(C) : *X — &k is defined by

Rep(C)(x) :=sup{a:z [ a € C}.

A set C' C <*X which satisfies the hypothesis of this definition we call a cloud.
This definition allows us to define more functions than the previous one because
given a tree T'C <" X the set C' of sequences just outside the tree forms a cloud and
Exit(T") = Rep(C). The set of all initial segments of elements of a cloud need not
be a cloud. We will generally be concerned with clouds in the case that k = w. If
T C <*X is a tree with no length s branches, then T is a cloud. The abbreviation

“Rep” stands for representation.



CHAPTER II

Past Work

The purpose of this chapter is to summarize relevant past work on the problem
of understanding the cofinality of (*#, <), and generalized domination in general.
The reader may skip this chapter without loss of continuity. On the other hand, the
reader interested in (*x, <) but not B,(w, <) or B, (“w,<*) for a < w; will enjoy
this self contained chapter. There are many statements that have implications for
the cofinality of (*k, <) scattered throughout the literature. We have collected and
organized them together.

To compute cf B, (w, <) and cf B, (“w, <*), one would first look to the “usual
techniques”. We feel obligated to collect a list of these, even though they do not
solve our problem. Most of them belong to what may be called uncountable infinitary
combinatorics (in contrast to those combinatorial questions about the continuum
which are of a countable nature). Also, our approach for computing cf B, (w, <)
and cf B, (“w, <*) is to prove theorems about encoding and decoding, which is quite
different from most of these combinatorial methods.

We begin by describing the simplest ways to show cf (*«, <) is large. The un-
bounded subset bound is still used by the more subtle methods. Next, we explain

why we are studying (*x, <) instead of (*x, <*), and point out that their cofinali-

27
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ties are equal. We then describe some of what is known about (*)\, <*). Next, we
change gears slightly to summarize work on posets in descriptive set theory similar
to Ba(w, <) and B, (Yw, <*).

We then return to infinitary combinatorics, and first summarize the implications
for cf (*x, <) when 2 is a real-valued measurable cardinal. We then discuss one
of the most important problems related to computing cf (*x, <): constructing large
Z-almost disjoint families for some x™-complete ideal Z on A. There are various
techniques for creating new families from old ones, which we have organized together.
Next, we discuss a problem whose importance rivals the construction of large Z-
disjoint families: the construction of large x*-independent families. From this, we
get that \® = X implies cf (*x, <) = 2*.

At the end of the chapter, we show a connection between everywhere domina-
tion and finding paths through trees. This illustrates the essential idea behind the
Jockusch [28] and Solovay [42] result that A] subsets of w can be encoded into
(“w, <). Finally, we show the important connection to weak distributivity laws for

complete Boolean algebras.

2.1 Basics

Given a cardinal A and a regular cardinal x < A\, we will review the basic ways
to show that cf (*x, <) is large. These are different from the techniques we will
develop to “encode information” into functions which can then be “decoded” from

dominators of those functions.

Proposition I1.1 (Standard Diagonalization Bound). For any regular cardinal k

and any cardinal X > k, cf Pk, <) > AT,
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Proof. Consider any G = {g, € *k : @ < A} of size at most \. Define f € *s by

f@) == go(a) + 1.
Then f is not everywhere dominated by any member of G, so G is not cofinal. [

Indeed, this proof can be easily modified to show cf (*x, <*) > AT, but we will
wait until the next section to discuss (*#,<*). This argument is atypical in that
we start with an alleged dominating family, and then we use this to create a novel
function to get a contradiction. This contrasts with the approach of first building a
large family of functions all of whose subsets of a certain size are unbounded, and
then appealing to the pigeon hole principle to select one of these subsets. We will

describe this approach now. First, recall the following.

Proposition I1.2 (Infinite Pigeon Hole Principle). Let p be an infinite cardinal and

suppose it is partitioned into pieces.
1) If there are < cf(u) pieces, then there is a piece with p elements.

2) If there are < u pieces, then for each ' < u there is a piece with more than '

elements.

Proposition I1.3 (Unbounded Subset Bound). Let u be an infinite cardinal and
P = (X, <) be a poset. Suppose F C X and all size u subsets of F are unbounded

in P (and p < |F|). Assume one of the following:
1) p<|Fl;
2) p=|F| and p is regular.
Then F cannot be dominated by < |F| elements of X. Hence,

cfP > |F|.
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Proof. Let G C X have size < |F|. Suppose, towards a contradiction, that
(VfeF)Fgeb)f<y

Partition F into |G| pieces, where all elements of a piece are below a single element
of G. Since we are assuming either 1) or 2), by the infinite pigeon hole principle,
there is a single piece with at least y elements. That is, there are u elements of F
all below a single element of G. This is a contradiction, because we assumed each

size u subset of F is unbounded in P. O]

Apparently all classical ways to show that cf (*x, <) is large use this bound. Often
the arguments use p = x. However, in the next chapter when we prove cf (*x, <) = 2*
for A\ a singular strong limit cardinal and x < A\, we will see that it is useful for p to

satisfy the partition relation
= (“)cf(x)-

Note the requirement that all size u subsets of F are unbounded can be weakened
to almost all with respect to a sufficiently complete ideal on F. We will not need this
generalization, but the interested reader may find it useful. We say that an ideal 7
is k-complete if unions of < k sets in Z are in Z. Also, given an ideal Z, the set Z+
is the collection of subsets of the underlying set not in Z. The s-completeness of an

ideal can be viewed as a pigeon hole principle:

Proposition II.4 (Idealized Infinite Pigeon Hole Principle). If p is an infinite car-
dinal, T is a k-complete ideal on p, and p is partitioned into < Kk pieces, then one of

the pieces is in IT.

Proposition I1.5 (Idealized Unbounded Subset Bound). Let P = (X, <) be a poset.

Let F C X be infinite and let T be a k-complete ideal on F. Suppose all subsets of
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F in ZT are unbounded in P. Then F cannot be dominated by < k elements of X.

Hence, cfP > k.

Proof. The proof is almost identical to that of Proposition I1.3, except we use the

idealized infinite pigeon hole principle. O

2.2 Everywhere vs. Eventual Domination

Let £ < A be infinite cardinals with x regular. In the literature, the poset (*x, <*)
of functions from A to x ordered by eventual domination is studied more than (*x, <).

We say g eventually dominates f, and write f <* g, precisely when

(2.1) {rer:flz)>g(x)}

is bounded below \. In general, for any ideal Z on A, f <7 g iff the set (2.1) is in Z.
More generally, given any product of regular cardinals [[,_, 5o (treating r, as the

poset (Ko, <)) and any ideal Z on A, we can consider the poset

<H Kas SI)

defined in the expected way. The problem of understanding the cofinality of these
posets is extremely broad. Indeed, it encompasses PCF theory and ultrapowers of
w. Because of the breadth of this problem, we need to restrict our attention to
specific cases to make progress. For further information on (*x, <z) and even more
general posets, see [37]. We will now explain why we are investigating everywhere
domination.

First, everywhere domination serves as a natural boundary for the general prob-

lem. That is, for any ideal Z on A, there is a (trivial) morphism from (], fKa, <)
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to (I[,<) Ka> <z). Hence, this is the “top layer” of the hierarchy of these posets.
This layer also has internal structure. For example, given a sequence (kq : o < Ag)
of regular cardinals and A\; < Ay, there is a (trivial) morphism from ([],_,, Ko, <) to
(ITacy, Fa» <). In particular, for infinite cardinals £ < A; < A, there is a morphism
from (*2k, <) to (Mk,<). In the next chapter in Section 3.3, we will show there is
more subtle structure. For example, if A is an infinite cardinal and k1 < Ky < A
are regular cardinals satisfying x5' < A, then there is a morphism from (*x1, <) to
(Mra, <).

Since everywhere domination is at the top of the hierarchy, it is the natural relation
to attempt to “encode information into”. For example, if I' C P(w) and <y is the
constructibility ordering, then if there is a morphism from (“'w, <7) to (I', <) for
some ideal Z on wy, then there is one when Z = {(}. Since we want to prove that
these kinds of morphisms do exist, posets of the form (*x, <7) for Z = {0} are the
appropriate candidates to investigate.

However, since eventual domination is studied much more than everywhere dom-
ination, we will explain how they are related. First, note that the standard diago-

nalization bound from the previous section easily extends to eventual domination:

Proposition I1.6 (Standard Diagonalization Bound). If k is a regular cardinal and

A\ > k is a cardinal, then cf (*r, <*) > AT,

Proof. Let {X, : @ < A} be a partition of A into sets of size A. Consider any

G ={ga € *k : @ < \}. Define f € *k such that
(Va e \)(Vz € X,) f(z) = go(x) + 1.
Then f is not eventually dominated by any member of G. m

Indeed, the same argument shows that whenever Z is an ideal on A such that A
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can be partitioned into A sets X, each in Z%, then cf (*x, <7) > \*.
Now, of course there is a morphism from (*x,<) to (*x,<*). Even though a
morphism need not exist in the opposite direction, it turns out that the posets have

the same cofinality. First, note the following:

Lemma I1.7. For any k < A,

of Pk, <) = cf Pk, <*) - Z cf (*k, <).

<A

Proof. The > direction is easy. For the other direction, let F C *x be cofinal in
(*k, <*) having minimal cardinality. For each x < X, let H, C ®k be cofinal in
(*k, <) having minimal cardinality. For each f € F, © < A, and h € H,, define
gran € K by

ha) if a <z,
gf,x,h(a) =
f(a) otherwise.

The family {gs.n: f € FAx < AAh € H,} is cofinal in (*k, <) and has size

<A

so we are done. O

The idea in this proof is present in the proof that when A is a progressive set
(JA| < min A) of regular cardinals, max pcf(A) = cf (J[[ 4, <) ([23] Theorem 3.4.21).
The relevant part of the argument is the (easily verifiable) fact that given ideals
7y €7, on a cardinal A and any sequence (K, : @ < \) of regular cardinals,

cf(H Ko, <1,) < cf(H Ko, <1,) * Z cf(H Ko, <1,)-

a< a<A Xely aceX

This is an inequality instead of an equality because we have a sum of possibly 2*

terms on the right hand side. Here is the other trick:



34

Lemma I1.8. Let k, \1, Ay be infinite cardinals with \y < \o. Then

of (Mg, <) < ef (MR, <F).

Proof. For each f € Mg, let f’ € *2k be the function defined by

f'Ar-a+8):= f(B)

for o < Ay and B < A;. That is, f’ is the function f repeated Ay times. Let G C M2k

be cofinal in (*2x, <*). For each g € G and o < Ay, let g, € Mk be the function

9a(B) == g(A\1 -+ B).

Now, if f/ <* g, then (Ja < A2) f < go. Thus, {go : g € G A @ < Ao} is cofinal in

(Mg, <) and has size |G|.

Corollary I1.9. For any k < A,

of Pk, <) = of Pk, <*).

Proof. By the preceding two lemmas,

of (M, <%)

INA
(@]
—

Y

F

A

= of Pk, <*).

This chain of inequalities gives us the desired equivalence.
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2.3 Functions from A\ to )\

Instead of studying (*x, <*) in general, one usually studies (*)\, <*) (assuming A
is regular). Moreover, usually A = w. The poset (“w, <*) is the one most likely to
appear in applications to other branches of mathematics. In the study of the set
theory of the real line, (*w,<*) is near the center of a complicated interconnected
plethora of structures, which taken together we may call the continuum. It is also
highly chaotic in the sense that we can force its cofinality and bounding number to
be almost anything we want (subject to the constraints given by its interconnections
to the rest of the structures of the continuum).

Hechler [21] has shown that given a poset QQ in which every countable subset has
an upper bound, there is a c.c.c. forcing H which forces a strictly order-preserving
cofinal embedding of Q into (“w, <*). Now, let A be a regular cardinal. To be concise,
let us write b()\) for b (*)\, <*) and 0()) for cf (*\, <*). Cummings and Shelah [7]

have generalized Hechler’s result as follows:

Theorem I1.10. (Cummings-Shelah) Let X be a reqular cardinal satisfying \<* = X,
and suppose that Q is any well-founded poset in which b(Q) > \T. Then there is a
forcing D(\, Q) satisfying the following:

1) D(A\, Q) is A-closed and A*-c.c.;

2) 11F Q can be cofinally embedded into (*X, <*);

3) If 6(Q) = B, then 11IF b(*\, <*) = 3;

4) Ifo(Q) = 8, then 11F d(*\, <*) = 4.

By A-closed, we mean that any decreasing chain of length < A has a lower bound.

Since the forcing is both A-closed and AT-c.c., it preserves all cofinalities. Cummings
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and Shelah go on to show that if we assume GCH, then for any class function F' that

maps each regular cardinal A to a triple of cardinals (8()\),d(\), u(N)) satisfying
X < eEBN) = BN < ef8(N) < 5(N) < ()

and

A < cfp(N)

for all A, there exists a forcing P, preserving all cardinals and cofinalities, such that
in the generic extension, b(\) = B()\), 9(\) = 6(A), and 2* = p()\) for all regular
A. By what we will observe in Section 3.1, it follows that if the functions satisfy
(VA < k) B(A) = 0(A) but B(k) < d(k), then k cannot be measurable in the generic

extension.

2.4 Some Posets in Descriptive Set Theory

Recall that B, (w, <) is the poset of Baire class « functions from “w to w ordered
pointwise by <, and B, (“w, <*) is the poset of Baire class a functions from “w to
“w ordered pointwise by <*. We will eventually compute the cofinalities of these
posets. As we stated earlier, the choice of “w as the domain for the functions is out
of convenience and is not essential.

In the literature, the question of what well-orderings (and more generally, linear
orderings) embed into posets similar to B,(w, <) has been investigated. In [12],
Elekes and Kunen show that for any Polish space X, a well-ordered sequence of
length & can be embedded into the poset of continuous functions from X to R (ordered
pointwise) iff £ < w;. In fact, they show that for any metric space X, a well-ordered
sequence of length & can be embedded into the poset iff £ < d(X)™*, where d(X) is the

smallest size of a dense subset of X. They then show that the separable metric space
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X = P(w) is such that for each £ < ws, there is a well-ordered chain of Baire class 1
functions from X to R of length £. The question of whether there exists a separable
metric space in which there are such chains of length w, or longer is independent of
ZFC (even assuming —CH).

In [34] (24.11I, Theorem 2'), Kuratowski shows that for any Polish space X, a
well-ordered sequence of length ¢ can be embedded into the poset of Baire class 1
functions from X to R iff ¢ < w;. The same question but with Baire class o functions
for any fixed @ € [2,w;) is independent of ZFC [31]. Recently, a characterization has
been found [13] of what linear orderings can be embedded into the poset of Baire
class 1 functions from X to R.

Our original motivation for studying B, (“w, <*) was to get insight into the poset
used in the definition of Borel boundedness. This notion appears in the theory of Borel
equivalence relations £ C “w x “w all of whose equivalence classes are countable
(which hereafter we call countable Borel equivalence relations). Many notions of
equivalence in mathematics fit into this framework. An important example is Turing
equivalence. Given two such equivalence relations £ and F' on Polish spaces X and Y

respectively, a Borel reduction from E to F'is a Borel function f : X — Y satisfying
(Vxq, 29 € “w) x1Exe < f(21)F f(22).

An equivalence relation E is Borel bounded [3] iff for each Borel ¢ : “w — “w,
there exists a Borel ¢ : “w — “w which pointwise eventually dominates ¢ and is =*
constant on F classes. Hence, this is a statement about the relationship between F
and B, (“w, <*).

A sufficient understanding of which equivalence relations are Borel bounded will
solve the long-standing but still open Union Problem, which conjectures that the

increasing union E of a sequence of hyperfinite countable Borel equivalence relations
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is hyperfinite. Indeed, such an F is hyperfinite iff it is Borel bounded. By hyperfinite,
we mean the increasing union of Borel equivalence relations all of whose equivalence
classes are finite. It is currently unknown (in ZFC) whether any Borel equivalence
relation, all of whose classes are countable, is not Borel bounded. However, Martin’s
conjecture (a deep problem in computability theory concerning the structure of the
Turing degrees) implies that Turing equivalence is not Borel bounded [45]. This is
a mysterious situation, because it suggests a connection between two difficult open
problems in seemingly unrelated areas.

To investigate B, (“w, <*) we must ask precise questions, the most natural being
“what is its cofinality?”. We will prove Theorem VII.28, which implies the answer is
2¥. The proof will have a computability theoretic nature. This reinforces the hope
that there is a connection between Borel boundedness and computability theory.

Finally, we hope that our techniques can be generalized enough to have implica-
tions for the hierarchy of norms (also called the Steel hierarchy) [35]. This is the
poset of surjections ¢ : “w — « to ordinals ordered by ¢ <gpr v iff there exists a

continuous f : “w — “w satisfying

(Vx € “w) p(x) <ppr ¥(f(x)).

The FPT stands for “First Periodicity Theorem”. This poset is important when one
assumes the axiom of determinacy. If the encoding theorems in this thesis could
be sufficiently generalized, we would have (assuming AD) that for each limit ordi-
nal o < © and for each A C w, there is some ¢4 : “w — « such that whenever

¥ Yw — « satisfies ¢ <gpr 1, then A € L|c|] where c is any “code” for 1.
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2.5 Real-valued Measurable Cardinals

Recall that a cardinal § is real-valued measurable if there is a real-valued function

i P(5) — R satisfying the following:

2) (Vo € 0) p({x}) = 0;

3) (VA <0)if (A, : a < A) is a sequence of pairwise disjoint subsets of §, then

M(U Aa) = ZN(Aa)'

a< a<\

Given a real-valued measurable cardinal ¢, the following are equivalent:
1) ¢ is not measurable;
2) § < 2¢;

3) There exists a function p witnessing that 0 is real-valued measurable such that
if A C ¢ satisfies u(A) > 0, then there exists some B C A such that u(B) > 0

and u(A — B) > 0.

When 2% is a real-valued measurable cardinal, we can compute the cofinality of
(*k, <) whenever k < A < 2% and k # 2¥. Especially notable is that cf (*x, <) < 2*
when & is a regular uncountable cardinal < 2¥ and A € [k, 2¥). We will summarize

these known facts now.
Fact 11.11. If 2% is real-valued measurable and k < 2*, then 2% = 2%.

This is due to Prikry [40]. A proof can be found in Fremlin’s article on real-valued
measurable cardinals [17]. When we discuss independent families of functions, we will
see that \* = X implies cf (*x, <) = 2*. Hence, if A = 2 is real-valued measurable

and r < 2¢) then cf (*x, <) = 2}
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Fact 11.12. If 2¢ is real-valued measurable, then cf (“w, <) < 2.

This is due to Kunen [32]. In [43], Szymaiiski shows the stronger result that if
there exists a o-additive probability measure on P(2¥) such that each measure 1 set
has size 2¢, then cf (*w, <) < 2¢.

Fact I1.13. If 2¥ is real-valued measurable and w < X\ < 2, then cf (*w, <) = 2.

The case where A = wy is due to Jech and Prikry [27]. The general case is proved

in [43]. In [43], the unnecessary requirement is made that A be regular.

Fact 11.14. If 2 is real-valued measurable and w < kK < A < 2¥ with k regular, then

of Mk, <) < 2v.

This is proved in [43].

2.6 Almost Disjoint Functions

Although the question of whether cf (*x, <) = 2* for cardinals k < X has not had
much attention in the literature, the related problem of constructing large almost
disjoint families of functions has been well studied. First, we will explain the connec-
tion between the two problems, which ultimately comes from the Unbounded Subset
Bound (Proposition I1.3). Then, we will survey some standard ways of creating large
almost disjoint families. All the significant results in this section can be found in

27].

Definition I1.15. Let A\ and s be infinite cardinals. Let Z be an ideal on A\. A

family F C *k is Z-disjoint if for distinct fy, fo € F,

{zrer:fi(z)=fl2)} €T,

If 7 is the ideal of bounded subsets of A, then we call F an almost disjoint family.
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This is why we care about Z-disjoint families:

Lemma II.16. Let Z be a k™ -complete ideal on A and let F C *k be I-disjoint.

Then each size r subset of F is unbounded in (*r,<). Hence, assuming |F| > k,
of *r, <) > | F).

Proof. By Proposition I1.3, it suffices to show the first claim. Let F' C F be a size &

subset of F. Given distinct fi, fo € F, define

Xpp={zeX: filz) = fa(z)}.

Since there are only x such Xy, r, and Z is kT-complete, there exists some xz € A not

in any Xy, 5. Fix such an z. The values of f(z) for f € F are all distinct. Hence,

{f(z): feF}

is unbounded in x. This implies that no single g € *x can everywhere dominate each

ferF. O

This leads us to define the following interval of cardinals:
Definition I1.17. Given infinite cardinals A and x,
ID(\, k) := {|F| : F C *k is Z-disjoint for some x-complete ideal T}.
By the lemma above,
cf Mk, <) > supID(\, k)

(assuming k™ € ID(A, k)). There are various ways to prove that sup ID(, k) is large.

We will present some now.

Lemma I1.18. There exists a size AT almost disjoint family F of functions from X
to \. Hence,

At € ID(A, ).
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Proof. The constant functions form an almost disjoint family of size A\. By diagonal-

ization, no size A almost disjoint family can be maximal. O

Lemma I1.19. There exists a size k almost disjoint family F of functions from k*
to k. Hence,

kT e ID(kT, k).

Proof. Using the Axiom of Choice, we may easily construct F = (f, : a < £¥) such

that for each o < k™, the values of fs(«a) for § < « are distinct from one another. [

Lemma I1.20. There exists a size 2* almost disjoint family F of functions from A
to 2<*. Hence,

2% € ID(\, 2°%),
and therefore maxID(),2<*) = 2%

Proof. There are 2* paths through the tree <*2. By injecting each level into 2<%, we

may easily create the desired family. O]

These last three propositions are basic building blocks for constructing Z-disjoint
families of functions. There are also methods for creating new families from old ones,

which we will present now.
Lemma I1.21 (Tensor Lemma). If p € ID(\, k) and v € ID(A, p), thenv € ID(A, k).

Proof. Let

flz{flvaekm:a<,u}

and Z; C P(A) witness that u € ID(\, k). Let

Fo={fop € u:p<v}

and Z, C P(A) witness that v € ID(A, k).
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Let Z, ® Z; be the rk-complete ideal on A x A defined by
XeLoli (ZaLh) (xy,x)) (x,21) € X = (Lyxa)(Zi 1) (20, 21) & X.
By Z*, we mean the filter dual to Z. By (Sz) ¢(x) we mean {x : ¢(x)} € S. For
each B < v, let fg: A x A = k be the function
fo(z1,29) = f1 £, 5(aa) (1)
Now, for distinct 51, 82 < v,

(Z372) fop (72) # f2,8,(72)
= (I;l’g) fl’fQ’/Bl (z2) 18 Il—diSjOiIlt from fl’flﬁz (z2)
= (L322)(Zi21) 1105, 02) (1) 7 S112, (@2) (71)

= fa, is Iy ® Z;-disjoint fromfg,.

Thus, {fs € *k : B < v} is an Z; ® T,-disjoint family of functions. By bijecting

with Ax A, we get the desired family of functions from A to k, and so v € ID(\, k). O

Lemma II1.22 (Crusher Lemma 1). If v € ID(\, k), A < cf(k), and cf(k) < cf(v),
then (3a < k)v € ID(A\, ). Moreover, if F C *k witnesses that v € ID(\, k), then

there exists o < Kk and a size v subfamily G C F satisfying G C *a.

Proof. This is easy. O
The following hypothesis is needed for the second crusher lemma.

Definition I1.23. A family F C *x is branching if it is almost disjoint and moreover

whenever fi, fo € F and o < A satisfies fi(«a) # fo(a), then (V5 > «) f1(8) # f2(5).

Equivalently, 7 C *k is a branching family iff it is included in the set of paths
through some tree T'C <*k all of whose levels have size < k. The families given by

Lemma I1.19 and Lemma II.20 can be assumed to be branching.
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Lemma I1.24 (Crusher Lemma 2). Let F C *k be branching of size v. Suppose
cf(r) < cf(N), cf(k) < cf(v), and A < k. Then there is some size v subfamily G C F
satisfying

(VB <r){f(B):feb} <a

for some a < k. Hence, there is a size v branching subfamily of *o.

Proof. Let (o, : v < cf(k)) be cofinal in . For each f € F, let 74 < cf(k) satisty
f(B) < a,, for X many 8 < A. Since cf(k) < cf()), these v; do in fact exist. Since
cf(r) < cf(v), there is some size v family G C F and some 7 < cf(x) such that (Vf €
G) f(B) < a, for A many § < A. We claim that (V8 < k) [{f(B) : f € G} < X a,.
Pick any . For each n € {f(B) : f € G}, let (,,y,) be such that z, >
and there exists some f € G satisfying f(8) = n and f(z,) = y, < «,. The
pair (z,,y,) is well-defined because (Vf € G) f(z) < «, for A many z. Now, the

function 1 — (x,,y,) must be an injection (because G is a branching family). Hence,

HfB): feG} <A a,. 0

We will now give an example of how to apply these lemmas. Let A be a cardinal
and assume 2<% < Ry and 2<% < ¢f(2*). Applying Lemma I1.20, we get a size 2*
branching subfamily of functions from \ to 2<*. Note that each cardinal < Nef()
is either regular or has cofinality < cf(\). This allows us to apply the Crusher
Lemmas repeatedly until we get a size 2* branching family G of functions from \ to
A. If in particular A = wq, then at the end we may apply the Tensor Lemma with
G and a size w; almost disjoint family of functions from w; to w to conclude that
max ID(wy, w) = 241, Hence, cf (“'w, <) = 2“1

In [27] (as well as [26]), it is shown how to replace the hypothesis 2<“1 < cf(241)

with the weaker one that 2<¥* < 2“1, Let us summarize that cf (“'w, <) = 2“1
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whenever either of the following hold:
1) 2% < wo;
2) 29 < 2% and 2¥ < N,,.

Also, given cardinal arithmetic assumptions, it is shown in [27] that there exist large
almost disjoint families when there do not exist inner models with large cardinals

(by applying a covering theorem).

2.7 Independent Families of Functions

To show cf (*k, <) = 2%, by the unbounded subset bound (Proposition I1.3) it
suffices to construct a size 2* family F C *k all of whose size x subsets are unbounded

in (*x, <). There are two main ways to get such an JF:
1) F can be Z-almost disjoint for some x-complete ideal on A;
2) F can be x*-independent.

We will recall the classical theorem which constructs x*-independent families. This

will give us that \* = X\ implies cf (*x, <) = 2.

Definition I1.25. Let \, x, and v be infinite cardinals. A family F C * is said to

be v-independent if
(VF € [F]™) (Ve : F = k) Fz € \)(Vf € F) f(z) = o(f).

That is, a family F C *k is v-independent if the functions in each size < v subset
take specified values at some point x € A\. Another name for this is “a family with
v-oscillations” [5]. From the definition, it is clear that if F C *k is kT-independent,

then every size x subset of F is unbounded in (*x, <).
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We will now recall an old result to construct such families. For the sake of this
section, let I(\, k,v, 1) be the statement “there exists a family F C *x that is v-
independent and of size u”. I(w,2,w,2*) and I(2¥,2,w, 2*") were both shown in [16]
by Fichtenholz and Kantorovitch. For an arbitrary infinite A, (), 2,w, 2*) was shown
in [20] by Hausdorff. For infinite cardinals A and & such that 2<% < X\, I(),2, k, 2*)
was shown in [44] by Tarski. Finally, for infinite cardinals A and x such that A<" = X,
I(\ A, K, 22) was shown in [14] by Engelking and Kartowicz. We state this last result
as the theorem below. For a proof of this theorem, see (a) = (d) of Theorem 3.16 in
[5]. In the next chapter, we will present an instance of this proof in order to analyze
the complexity of the functions involved. See also the end of Chapter 3 in [5] for

more information.

Theorem I1.26. If \* = ), then there is a k*-independent family of 2" functions
from X\ to k. More generally, if \<* = X, then there is a k-independent family of 2*

functions from X\ to k.
Note that the following statements are equivalent (for k < \):
1) X=X
2) T(\ N, KT, 20);
3) I KT, K).

That is, the theorem gives that 1) implies 2). We see that 2) trivially implies 3).
Finally, 3) implies 1) because given an F' C *) that is x-independent of size k,
every ¢ : F' — K corresponds to a unique z € A. Here is the corollary of the theorem

relevant to us:

Corollary I1.27. If \* = \, then cf (*k, <) = 2*.
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This corollary was surely known by anyone aware of theorem, but the author
could find no reference for it. With the special case A = 2* and xk = w, we have the

following;:

Corollary I1.28. The cofinality of the set of all functions from 2% to w ordered by

everywhere domination is 2%°. That is, cf All(w, <) = 2%°.
This then has a simple corollary:
Corollary I1.29. Assume CH. Then cf (*'w, <) = 2“1,

This is attributed to Kunen (as stated in [27]). Note that this corollary is implied
by the comments at the end of the previous section. Hence, there are two quite
different proofs that cf (“'w, <) = 2“ assuming CH. From Corollary V.21, we will
see a third completely different proof of this.

The existence of sufficiently independent families of functions has an implication
for the theory of challenge-response relations. Recall that given R = (R_, Ry, R),
the cardinal ||R1|| is the smallest size of a set of challenges X C R_ not met by a

single response y € R.

Proposition 11.30. Let R = (R_,R., R) be a challenge response relation. Let
k= ||RY||. Let X be a cardinal satisfying \* = X. Let R := (*\R_,*R,, R) be the
conjunction of R with itself X many times. That is, fRg iff (Vo € ) f(x)Rg(z).
Then ||R|| = 2*. In fact, there is a set F C *R_ of size 2* such that for each size k

subset F' of F, there is no g € *R, meeting each element of F'.

Proof. Let A = {a, : @ < k} C R_ be a set of k challenges not met by any single
response b € R,. Using Theorem I1.26, we obtain a set F = {f5: 8 < 2*} C*R_ of

size 2* such that for each injection i : K — 2%, there exists an x € \ satisfying

(Vo < K) fia) () = aq.
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The set F is as desired. O

2.8 Dominating Tree Branches

There is an important situation involving trees where the domination relation
is relevant. Specifically, let A\ and s be infinite cardinals and 7" C <*k be a tree.
Suppose f € *k is in [T]. If g € *k everywhere dominates f, then f is also a path

through the tree

T, :={teT: (VYo e Dom(t))t(a) < g(a)}.

Thus, to certify that [T'] # 0, it suffices to find a function g € *« satisfying [T,] # 0.
This is interesting, because it breaks the problem of certifying that [T] # @ into two

steps:
1) Find a function g € *« sufficiently high up in the ordering (*s, <).
2) Certify that [T<,] # 0.

Recall that a set A C w is I iff there exists a computable function F : w —

P(<“w) such that each F'(n) is a tree and
neAs[Fn)=0.

By computable, we mean the set {(n,t) : t € F(n)} C w x “w is computable.
Fix such an A and F. By hanging each tree F'(n) below a stem of length n, we
may assume that each F'(n) has a stem consisting of 0’s of length at least n. Now,
for each n such that [F(n)] # 0, choose some p, € [F(n)]. Let g € “w everywhere

dominate each p,, (which is possible by the assumption on the F'(n)’s). The statement



49

[F(n)<,] = 0 is XY as a relation of n and ¢g. That is, by compactness, [F'(n)<,] = 0
iff

(3l € w)(Vt €'w)t & F(n)<,.
It is not difficult to see (using the same trick) that in fact g can be chosen to be II}

in A. We have just proved the following:
Proposition I1.31. Suppose A C w is I1{. Then there is some g € 11} N “w such
that for any g > g, A is (uniformly) X9 in g'.

Hence, we get the existence of the following morphism:

I} N*w < 1} N*w

I

I NP(w) <so I NPw).

Of course, making finite modifications to g’ does not change which sets are <go below
it, so we can replace the top relation < with <*, but never mind this. This morphism
be viewed as an encoding theorem: a II} set can be encoded into a function from w
to w, and that set can be guessed from any dominator of that function (by guessing
all sets X2¢ in the dominator). Our encoding theorems have this same spirit, although
the proofs are completely different.

Now (“w, <) is directed, a set is A{ (also called hyperarithmetical) iff both it and
its complement are IT}, and < Ao is the same as Turing reduction <r. Thus, we get

the following:

Corollary I1.32. Suppose A C w is Ai. Then there is some g € A] N“w such that

for any ¢ > g, A is (uniformly) computable from ¢'. Hence,

Al N“w < Al N¥w
Al NP(w) <r Al NP(w).
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This result is due to Jockush [28] and Solovay [42]. It is optimal in the sense that
for each A C w that is not A{ and each g € “w, there is some ¢ > ¢ that does not
compute A. It can be said that the subsets of w needed for (“w,<) are precisely
those that are A} [1].

The trick we described in this section applies not only to (“w, <) but to (*), <)
whenever A is strongly inaccessible and has the tree property (a.k.a. weakly com-
pact). In the next chapter, we will describe a slightly different trick where we fix an
enumeration of each level of a tree. There, only the tree property and not full weak

compactness is what matters.

2.9 Weak Distributivity Laws and Suslin Algebras

The study of properties of complete Boolean algebras is a central area in set theory.
From our perspective, it is essentially the same as the theory of forcing. That is,
which statements hold in the extension after forcing with a c.B.a. is a property of
the c.B.a. and the ground model. Thus, we want to know the effect that axioms
(statements in the ground model) have on properties of c¢.B.a.’s.

Given a challenge-response relation R = (R_, R, R), we may ask which complete
Boolean algebras (hereafter called c.B.a.’s) B are those that after forcing with them,

every challenge in the extension is met by a response in the ground model. That is,
(2.2) 1lFg (Ve € R.)(3y € Ry NV)xRy.

Of course, this statement only makes sense when the forcing extension has its own
version of R. We generally assume the relation is sufficiently absolute (so that it
means what we expect in the extension). If B and R satisfy (2.2), then let us say B

is R-adequate. Fixing R, this gives us a property of c.B.a.’s.
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If there is a morphism from one relation R; to another R,, and the morphism
is sufficiently absolute, then any B that is R;-adequate is also Ro-adequate. Hence,
the program to find morphisms between (useful) challenge-response relations is a
combinatorial approach to finding relationships between properties of c.B.a.’s.

We mention all this because various results on the combinatorial nature of dom-
ination are inherent in discussions of distributivity laws for c.B.a.’s. As defined in

[26], given infinite cardinals A and k, we say that a c.B.a. B is (\, k)-distributive if

112 wes= > [l

a< <k [A=k a<A

for any (uap € B : @ < A\, < k). Given maximal antichains A;, Ay C B, we
say that Ay refines Ay if (Vay € Ag)(Ja; € Aj)as <p ai. It is a fact that B is
(A, k)-distributive iff each size A collection of size x maximal antichains in B has
a common refinement. Hence, B is (A, k)-distributive for every cardinal x iff it
is (A, |B|)-distributive. This is also called being (A, co)-distributive. There is an
important characterization in terms of forcing (which can be found in [26] as Theorem

15.38), which is why we care about (A, k)-distributivity:

Fact I1.33. A complete Boolean algebra B is (A, k)-distributive iff

Lkg (Vf: A= R)feV.

Unfortunately, the definition of weak distributivity varies in the literature (for
example [29]). We will be using the one given by Jech (see [26]). That is, we say

that a c.B.a. B is weakly (X, k)-distributive if

11> ves =2 11 2 was

a< B<k gA—=K a< f<g(a)

for any (uap € B : a < A\, 8 < k). Of course, this also has a characterization in
terms of refining antichains. The following connects everywhere domination to weak

distributivity of c.B.a.’s:
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Fact 11.34. A complete Boolean algebra B is weakly (A, k)-distributive iff

LFg (Vf: A= k) Fg: A= R)geVAf<yg.

For an introduction to distributive laws in c.B.a.’s, see [25]. There are games
related to distributive laws in c.B.a.’s. There are implications between distributive
laws and players either having or not having winning strategies for these games. In
addition to [25], see [9] for a systematic investigation of these properties. There is a
large and still growing body of literature on the subject.

The following is often mentioned when discussing distributivity laws for c.B.a.’s:

Definition I1.35. A c.B.a. is a Suslin algebra if it is atomless, (w, co)-distributive,

and c.c.c.

It is a theorem of ZFC that there exists a Suslin algebra iff there exists a Suslin
tree. Furthermore, given a Suslin algebra B, there is a Suslin tree (turned upside
down) that completely embeds into B, so B is not (wy, 2)-distributive (see [26]). If a
c.B.a. is c.c.c, then it is also weakly (A, k)-distributive for every A and every regular
uncountable k. We will now recall the proof of a stronger statement. Recall that a

forcing has the k-c.c. if every antichain has size < k:

Lemma 11.36. If A and k are infinite cardinals with k reqular, P is a forcing with

the k-c.c, p € P, f c VE, andp I+ f : X\ — &, then there is some g : X\ — k satisfying
plFf<g.
Proof. For each o < A, consider the set
Sai={8<r:(3 <p)p I f(a) =75}
Since P has the k-c.c., it must be that each S, has size < k. For each a < \, define

g(a) :=sup S,.
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If it was not the case that p IF (Vo < \) f(a) < g(a), then there would be some

P <p, a <\ and 8 < k satisfying
P Ik f(a) =8> g(a),
but this would contradict the definition of g. O

Corollary I1.37. If a c.B.a. is k-c.c, then for each X\ it is weakly (A, k)-distributive.

The problem of finding weakly (), x)-distributive c.B.a.’s which are not k-c.c. is
somewhat of a mystery. Now, the lemma above gives us that p IF f< g and not just
that there exists some p/ < p satisfying p’ I f < §. This important point gives us
the next corollary. We are not being pedantic: there is consistently, relative to large
cardinals, a forcing P (see [36]) which does not collapse cardinals and does not add
reals, but still

LIk of (Pw, <) < m
If there exists a forcing with this property, then the following hold: (by [36])
1) the forcing must collapse some cardinal’s cofinality;
2) there exists an inner model with a measurable cardinal.

Statement 2) follows from 1) and the fact that the forcing does not collapse
cardinals. This next corollary uses the lemma above for both directions. While
the author could not find a reference for the following corollary, it is surely folklore

knowledge.

Corollary I1.38. If \ and k are cardinals with k reqular and P is a forcing with the
k-c.c, then

LIF of (Y, <) = of (M, <).
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Proof. Let v := cf (*r, <). To see why 1 IF cf (*&, <) < &, note that the lemma above
implies that if A C *x is cofinal in (*«, <), then 1 I (A is cofinal in (*%, <)).

For the more difficult direction, we must show that in the extension there is no
cofinal family of size strictly smaller than . Suppose, towards a contradiction, that
LI cf (;\/?;, <) > . Then there exists some p € P satisfying p I- cf<;\/%, <) <. Pick

p, i <v,and 7 € VE so that pI- (7 : i — *&) and

pl- (Vg € *R)(3y < i) g < 7(7).

For each v < p, applying the lemma above to (a name which 1 forces is equivalent

to) 7(§) produces a function g, € *« satisfying
pIE7(¥) < gy

We claim that {g, : v < p} C *k is cofinal in (*, <). Once this is shown, we will
have the contradiction.

Consider any g € *k. We will find v < p satisfying g < g,. We have p IF (3y <

i) g < 7(7v). Pick p’ < p and v < u satisfying p’ IF § < 7(¥). We now have
PIFg<7(3) < gy

Since p' IF g < §,, we have

The proof is complete. [

An easily verifiable fact that we should mention is that any forcing which collapses

the cofinality of a cardinal A to g < A is not weakly (A, u)-distributive.



CHAPTER III

Building on Past Work

This chapter is mostly a continuation of the last, with the difference being these
results are new. The last section of this chapter, however, is relevant to the goal
of computing B, (w, <) and B, (“w, <*) for all & < w;. We begin with the easy
observation that just as GCH cannot first fail at a measurable cardinal, neither can
the equality b (*\, <*) = cf (*\, <*). Next, we describe a trick relating everywhere
domination to the existence of paths through trees of a slightly different nature than
the one in the previous chapter. This allows us to make observations such as the
following: 2“* = max{cf (“'w, <), u}, where u is the smallest size of a collection of
wi-trees T' C <“w such that every element of “'w is a path through one of them.
Also, forcing (non-trivially) with an Aronszajn tree is not weakly (w1, w)-distributive.

In the next section, we discuss the relationship between (*k1, <) and (M, <) for
k1 # Ko. This is surprisingly subtle. After that, we prove a result which implies
that whenever \ is a singular strong limit cardinal and x < A, then cf (*x, <) = 2.
At the same time, we discuss the relationship between the poset (*x, <) and those
studied in PCF theory.

Finally, we analyze the complexity of the functions created by an instance of the

classical theorem to create large independent families of functions. This allows us to

95
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conclude that cf B, (w, <) = 2¢ for all but very small o < wy.

3.1 Scales at a Measurable Cardinal

Given any poset P = (X, <), bP = cfP if and only if P has a scale. This is
interesting because it implies the statement bP = c¢fP is equivalent to one which
uses different quantifiers. Specifically, the statement b P = cfP appears to involve a
universal quantification over all subsets of P. On the other hand, the statement that

P has a scale is asserting the existence of a sequence (z, € P: a < k) satisfying
(Vo < B < k)ze <ag| AN [(Vr e X)(Fa < k) z < x,].

This is second order existential quantification over P followed by first order quantifi-

cation. This implies that having a scale is upwards absolute:

Observation II1.1. Let M be a transitive model of ZFC and P € M be a poset. If

(P has a scale)™, then P has a scale.

Hence, if M is a transitive model of ZFC and P € M is a posetx, then (b P = cfP)M
implies bIP = cf P. This allows us to conclude the following, which is very similar to

the fact that GCH cannot first fail at a measurable cardinal:

Proposition II1.2. Let U be a normal ultrafilter on a measurable cardinal k. If
(A< k: P\ <) has a scale} € U,
then ("k,<*) has a scale.

Proof. Let M be the transitive collapse of the ultrapower of V' by U. By Lo$’s
theorem, ({*x,<*) has a scale). Since "M C M, we have ("r, <)M = (g, <*).

Combining these two facts with the previous observation, we see that (", <*) has a

scale. O
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For each regular cardinal A, let b()\) := b {(*\, <*) and ?(\) := cf (*)\, <*). The
proposition above shows that if {A < k : b(A\) = 0(\)} is included in some normal

ultrafilter on «, then b(k) = (k).

3.2 More on Dominating Tree Branches

We will present a trick similar to the one in Section 2.8. We hope to convince
the reader that the problem of finding paths through trees is significantly related to
the everywhere domination relation; trees are an important source of examples to

understand (*x, <). Recall the following:

Definition III.3. Let )\ be an infinite cardinal and X be a set. A \-tree is a tree

all of whose levels have size < .

Definition ITI.4. A cardinal A\ has the tree property if every A-tree T' of height A

has a length A branch.

For notational simplicity, let ¢ < A be infinite cardinals. Suppose we have a tree
T C <*X all of whose levels have size < u, as well as a sequence S = (1, : @ < \)
such that each 7, is a surjection from u onto T'N*X. Suppose f € *X is in [T].

Define the function fs € *u by
fs(@) == min{ < p:na(B) = f I a}.
If g € *;1 everywhere dominates fs, then f is also a path through the tree
T=9:={teT: (Ya € Dom(t))(38 < g(a))na(B) =t | a}.

Note the difference between this definition of 7<¢ and the definition of T, in Sec-

tion 2.8. Of course, T'<Y depends on the sequence S. Like before, we see that to



58

certify that [T # 0, it suffices to find a function g € *u satisfying [T<9] # 0.

There are two interesting cases. The first is that ¢ = A and A has the tree property.
Hence, T<9 is a A-tree. This is the situation most analogous to Section 2.8, because
[T<9] # ) iff T<9 has A non-empty levels. Hence, [T] # 0 iff there exists a g € *\
such that 79 has A non-empty levels. This shows that testing whether [T] # 0
breaks into the difficult task of finding a function g sufficiently high up in (*\, <),
and the comparatively easy task of testing whether 7<% has A non-empty levels.

The other interesting case is that u© = A (the remaining case that pu* < A
trivializes our discussion). Given T" and a transitive model M of ZFC with T' € M,
it cannot be said in general that M contains every element of [T]. Indeed, [T] could
be non-empty and yet M N [T] = (). For example, T' could be a Suslin tree in M
and V could be a forcing extension of M by T.. However, if g € *unN M and S € M,
then T<9 € M and [T'<9) C M. The second conclusion follows easily from a standard

observation:

Lemma IIL5. If T C <*u is a tree with p < \ both cardinals with X reqular and
each level of T' has size < pu, then for each f € [T'] there is some o < X\ such that f

is the only length \ path through T' extending f | c.

Proof. Suppose, towards a contradiction, that there is a set H C [T”] disjoint from
{f} such that the elements of H deviate from f at levels unbounded in A. Then
since A is regular and p < A, we may fix an a < X such that there is a set K of
> u elements of H which deviate from f before level a,, and they deviate from f at
distinct levels. Then {k [ a: k € K} is a set of > p elements of the a-th level of 77,

which we assumed had size < pu. O]

Corollary II1.6. Let T be as in the lemma above.
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1) If M is a transitive model of ZFC and T" € M, then [T'] C M.
2) [T'] has size at most A.
The arguments we have given easily show the following:

Proposition II1.7. Let i be a cardinal, \ = p*, X be a set, and T C <*X be a
tree such that each level of T has size < p. If T, as a forcing, adds a path through

T, then it is not weakly (X, p)-distributive.

Proof. Fix an appropriate sequence S of surjections onto the levels of T. Let f be
a path through 7" added in the forcing extension. If the forcing is weakly (A, u)-
distributive, then we may fix a ¢ > fs in the ground model. Then the tree T<9 is
in the ground model, f is a path through it, and all paths through 7<9 are in the

ground model. O]

For example, a pruned Aronszajn tree ' C <“'w is not weakly (wy,w)-distributive
as a forcing.

As a final observation, let 7 be a family of minimal cardinality of w;-trees such
that each x € “w is a path through one of them. Of course, if there are no w-trees
with 2¢1 branches, then |7| = 2“1, If there are such trees, then perhaps |T| < 2*1,
and in this case we will argue that cf (“'w, <) = 2«1, Thus, we claim the following

(potentially non-trivial) equality:
20 = max{cf (*'w, <), |T|}.

Here is the proof: let G C “'w be cofinal in (“*w, <) of minimal cardinality. For each

T € T, we have

7] = (= : 9 €G}.
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By Lemma IIL5, each [T'<9] has size < wy, so [T] < |G|. Hence, 2 = max{|G|,|T|}.

3.3 Changing «

As we noted in the introduction, for a fixed cardinal A\ and regular cardinals
k1 < ko < A, there is no immediate reason for there to be any relationship between
cf (*ky, <) and cf My, <). Indeed, since every size ky set in (Mo, <) is bounded
but this is not the case for (*«1, <), there cannot exist a morphism from (*x,, <) to
(*k1, <). However, the following is a way to convert a large number of “s; challenges”
into a single “ky challenge”. We get an immediate improvement in that we can

convert that large number of k; challenges into that same number of k5 challenges.

Lemma IIL.8 (Increasing Range Characterization). Let A\ be an infinite cardinal

and let k1 < ko be reqular cardinals. The following are equivalent:

1) There exists a size ko family F C *ky all of whose size ko subsets are unbounded

in My, <).
2) There exists a morphism from (Mki, <) to (ky, <).
3) There exists a morphism from (*k1, <) to (ky, <).

Proof. First, note that 2) and 3) are equivalent. The 3) implies 2) direction is
easiest because there is a morphism from (*ky, <) to (kg, <). For the 2) implies 3)
direction, if there was a morphism from (*s;, <) to (kg, <), then there would also
be a morphism from (M, <) to Mk, <), and of course (M*ky, <) is isomorphic
to ki, <).

We will now show that 2) implies 1). Let (¢_, ¢,) be a morphism from (*xy, <)

to (k2,<). Then Im(¢_) C *k; has size ko, and all its size ko subsets are unbounded
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in <>\I€1, §>
Finally, for the 1) implies 2) direction, fix a size xy family {f, € *k1 : @ < Ko} all

of whose size Ky subsets are unbounded. We will define the morphism:

A A

K1 < R1
¢T ﬂ L(Zﬁr
K2 S Ko.

Define ¢_(«) := f, and

¢+(9) = supfa < rz : fo < g}
Note that ¢, is well-defined by the hypothesis on F. O]

The morphisms given by this lemma are destroyed if we force an everywhere dom-
inating function from A to k1, because F becomes bounded. Indeed, the morphisms
are not “canonical”. This contrasts with the morphisms we will construct in the
main part of this thesis, which are canonical. This next proposition applies the
lemma above using two ways of building families F all of whose size |F| subsets are

unbounded.

Proposition II1.9. Let A be an infinite cardinal and k1 < ko < X be reqular cardi-

nals. Assume one of the following:

1) k5* <\

n

~ =
2) (An € w)ry =ry T

Then there exists a morphism from (*ry, <) to (*ka, <).

Proof. First assume 1). Let p := k5'. Since p™ = pu, by Corollary I1.27 there is
a size 2# family F C Hk; that is ﬁf—independent. Letting 7' C F be a size ks

subfamily of F, we see that F' is also k] -independent. Every size s, subset of F’
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is unbounded. Thus, every size ks subset of F’ is unbounded. We may arbitrarily
extend the functions in F’ to be defined on all of A\. We now have a size ko family
F" C MKy all of whose size ko subsets are unbounded. Applying the lemma above,
we are done.

Now assume 2). Since morphisms compose together, we may assume ko = K.
Let F C "2k be a size ko family of almost disjoint functions given by Lemma II.19.
Note that all size x; (and therefore all size ko) subsets of F are unbounded. Extend
each function in F arbitrarily to obtain a size ko family 7' C *x; all of whose size

Ko subsets are unbounded. O

Similarly to 2) in the proposition above, one also gets an appropriate F provided
Ky € ID(A, k1), where ID is from Definition I1.17. We now have a pleasant picture
(omitting unnecessary arrows) of some of the morphisms between the first few posets

of the form (*x, <):

(w2, <) <”2wf,<><—...
(w1, <) (1w, <) =— (2w, <) =— ..

| !

(w, <) =—(w, <) =— (w0, <) —— (P, <) =— ..

We have omitted each (*k, <) where A < k because there are morphisms in both
directions between each such a (*x,<) and (k, <). By the reason we gave at the
beginning of this section, there are no arrows from a given row to a strictly lower
row. Of course, there are no arrows between (k, <) and (ko, <) when k; # ko
are regular. An example question we may ask is the following: is there an arrow
from (“w, <) to (k,<) for some regular uncountable k7 This, by Lemma IIL8, is

equivalent to asking what are the sizes of families 7 C “w all of whose size | F| subsets
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are unbounded in (“w, <). Kunen discusses this in part of [32]. The statement that
there is no such family of size x he calls D(k).

We may ask if there are any arrows that go to the right (and also possibly up).
Such morphisms would be counterintuitive, but we see no ZFC proof that none
exist. Here is an easy argument assuming GCH that none exist: if k < A are infinite
cardinals, then \* < cf (*k, <) < 2) = AT, Thus, given A\; < Xy with x; < A; and
Ko < Ag regular, we have cf (Miy, <) = A\ < A\J = cf (Mky, <). This prevents there
being a morphism from cf (M k1, <) to cf Mk, <).

Finally we must ask if every poset in a lower row has an arrow to a higher row
(except in the leftmost column). This appears to be a subtle problem. Each such
morphism is an example of “non-reflection” (borrowing the terminology that is used
in a significant portion of infinitary combinatorics [6]). The following definition

appears to be the relevant concept:

Definition IT1.10. Let R = (R_, Ry, R) be a challenge-response relation. Let k >
be infinite cardinals. We say that R has (k, u)-non-reflection if there exists a set of

 challenges such that no g members are all met by a single response.

We say R has (k, p)-reflection just when it does not have (k, u)-non-reflection.
That is, when for every set of k challenges, there are u elements of that set met
by a single response. Of course, these definitions are only interesting when there
exist u challenges not met by a single response. If pu; < ps < k, then R being
(K, po)-reflecting implies it is (k, p1)-reflecting.

A challenge-response relation having (k, pt)-non-reflection is the analogue of part
1) of Lemma II1.8. By a similar argument to the 1) iff 2) part of that lemma, we
see that R = (R_, Ry, R) has (k, k)-non-reflection iff there exists a morphism from

R to (k,<). Similarly, Given u < k, R has (k, u)-non-reflection iff there exists a
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morphism from R to (k, [x]<, €).

3.4 Singular Strong Limit Cardinals

Let A be a strong limit cardinal and x < A be regular. If X\ is regular, then
since \* = ), we have cf (*x, <) = 2*. The question arises whether we can drop
the hypothesis that A be regular. We will first give in Proposition III.11 a direct
combinatorial proof that the answer is yes. In fact, the full hypothesis of A being a
strong limit cardinal is not needed. After, we will show that standard PCF theory
facts imply most instances of the problem. This is because there exist morphisms
from posets of the form (*x, <) to posets of the form ([ _s A, <) where (A, : @ < J)

a<d o

is cofinal in A and cf(\) < § < A.

Proposition III.11. Let )\ be a singular cardinal. Let k < X be reqular. Assume
(Vo < A)o® <A

and 2N < X\ Let v = max{(2%)", (2¥MN)*}. Then there exists a size 2* family

F C*k all of whose size v subsets are unbounded in (*x,<). Hence, cf (*k, <) = 2*.

Proof. Once we construct the family F so that all its size v subsets are unbounded, it
will follow from the unbounded subset bound (Proposition I1.3) that cf (*x, <) = 22
(because v < X\ < 2* = | F|). To begin, let (A, < A : @ < cf()\)) be an increasing
sequence with limit A. Letting
T = H Ao
a<cf()

denote the Cartesian product of these sets, we have |T'| = 2*. For each t € T we will
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define a function f;, and our final family F will be
F:={fi:teT}.

Let (X, C A :a < cf(A\)) be a sequence of disjoint subsets of A satisfying | X,|" =
|Xo| and A, < 2/%el for each a < cf(\). Such a sequence exists because of the
assumption that (Vo < A)o" < A. For each a < cf()), let F, be a size A, family of
functions from X, to & all of whose size s subsets are unbounded in (*#, <). In fact,
since | X,|® = | X,| there is such a family of size 2%l (by Corollary I1.27).

We are now ready to define our family F. For each t € T, let f, € *k be any
function such that for each o < cf(A), fi | X, equals the t(«)-th element of F,. Let
F:={fi:t €T}. Of course, t; # ty implies f;, # fi,- There is an important way to

color pairs from 7. Namely, let
c: [T)? — cf(\)

be the function which given the pair {t;,t,} € [T]? returns the unique o = c({t,t2})
satisfying #1(a) # ta(a) and (V8 < a)t,(8) = t2(B). Given {t1,t2} € [T)* and
a = c({t1,t2}), the functions f;, | X, and f;, | X, are distinct elements of F,,. Now,

let p satisfy the partition relation

By the Erd6s-Rado theorem we have (27)" — (y%)? for all 7, so we may assume
p < v=max{(2)", (2"V)*}.

Of course v < 2*, so F does indeed have size v subsets.
We will now show that size u (and therefore size v) subsets of F = {f; : t € T}

are unbounded in (*x, <). Let T" be an arbitrary size u subset of T. Since

c | [T [T — cf(N)
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and |T'| = p, we may fix a size x subset 7" of T” that is monochromatic with respect
to ¢ | [T']%. Let a < cf()\) be the unique color assigned to all pairs from 7”. The
functions f; [ X, for t € T” are distinct elements of F,,. Hence, {f; [ X, :t € T"} is
an unbounded family of functions from X, to x. Thus, {f; : t € 7"} is unbounded

in (*x, <). O

We will now present a different way to understand functions from A to x < A where
A is singular. The following is a souped-up version of part 1) of Proposition II1.9,

and it is the natural way to show cf (*s, <) is large using PCF theory:

Lemma II1.12. Let X' < X be infinite cardinals. Let k < X\ be reqular. Let f be
a function that maps elements of X' to reqular cardinals in the interval [k, \]. Also

assume

(Va < XN) f(a)" < A
Then there exists a morphism from (*k, <) to (], f(a), <).

Proof. This is very similar to case 1) of Proposition II1.9. The point is that for each
a < X, there is a morphism from (*x, <) to (f(«), <), and these can all be combined

together. n

Recall from PCF theory that given X' € [cf()\),\) with A singular, pp,,(\) is
the supremum of all cofinalities of ultraproducts of sets of regular cardinals A C A
satisfying |A| < N. The fact that this definition involves domination mod ultrafilters

rather than everywhere domination is irrelevant because of the following:
1) the sets A in the definition can be assumed to be progressive (|A| < min(A));

2) if A is any progressive set of regular cardinals, then

max pcf(A) = cf (H A, <).
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For a proof of 2), see Theorem 3.4.21 in [23]. On the other hand, the restriction
A < \instead of merely X < X is unfortunate for our situation. The following shows

the importance of the pp,,(\) function:

Fact II1.13. Let A be a singular cardinal. Let N € [cf(A),\) be a cardinal and

N < . Also assume one of the following:

assume (Yo < \) o
1) X is not a fized point of the aleph function,
2) cf(A) > w.

Then ppy (A) = M.

Proof. See Theorems 9.1.1 and 9.1.3 of [23]. O

With this fact, we get another proof that cf (*x, <) = 2* in almost all instances

in which A is a singular strong limit cardinal:

Proposition I11.14. Let A be a singular cardinal, N € [cf(N\), X) be a cardinal, and
K < X be regular. Let v = max{\, k} and assume (Vo < X)o” < A\. Also assume one
of the following:

1) X is not a fized point of the aleph function;

2) cf(\) > w.
Then cf Mk, <) > M. In particular, if X is also a strong limit cardinal, and X' = cf(\)
then

of Pk, <) =22,

Proof. Tt suffices to prove only the claim cf (*x, <) > A\, because if \ is a strong

limit cardinal then Af® = 2% Since (Vo < A)o < X and we are assuming either

1) or 2), by Fact II1.13 we have
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We now must show

cf (', <) > ppy(N).

It suffices to show that for an arbitrary set A C X\ of regular cardinals satisfying
|A] < X that

cf (*k, <) > maxpcf(A).

Fix such an A. Without loss of generality, by deleting an initial segment of A we

may assume A C [k, A). Of course,
cf(H A, <) > maxpcf(A).

In fact, this is an equality when we assume A is progressive, but never mind this.
Since A C [k, A) and (Vo < A) 0" < A, applying Lemma II1.12 we get that there is a

morphism from (*x, <) to ([] A, <). Hence,
of Mk, <) > of (JT A, <),

and we are done. O

3.5 An Independent Family of Borel Functions

We will now give a proof that cf B, (w, <) = 2. We do this by constructing a size
2¢ family of Borel functions from “w to w that is w™-independent, which is certainly
sufficient. Indeed, we may easily convert the functions produced by the appropriate
instance of Theorem I1.26 into Borel functions from “w to w.

To see this, let

A:={(S,9):Se[Pw)]’g:S5— w}
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For each A C w, define fy : A — w by

g(A) ifAcS,
fA(Sag) =

0 otherwise.

Let

F={fa:ACuw}.

We will first show that F is w-independent. That is,
(VF' € [FI)(Ve: F' = w)(Fr € N)(Vf € F') f(x) = o(f).
Pick any F' € [F]¥ and ¢ : F' — w. Let S € [P(w)]“ be the set
S={ACw: faeF}
Let g : S — w cause the following diagram to commute:

A—fa
— s

s F

Let z = (S5, g). Then certainly

(Vfa € F') fa(z) = fa(S,g) = g(A) = o(fa).

Hence, F is w™-independent.
Now, by the definition of the functions f4, we see that there is a nicely definable

bijection 7 : “w — A such that each function f A “w — w defined by

is Borel. Hence,
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is an wt-independent size 2¢ family of Borel functions from “w to w. Applying
Proposition I1.3 to the family F with 1 = w, we see that cf B,, (w, <) = 2.

Indeed, the functions f4 are low down in the Baire hierarchy, so we have cf B, (w, <)
2 for all but very small o < w;. We will not fret now about at which « this hap-
pens, because in Chapter IV we will prove that By(w, <) = 9, and at the beginning
of Chapter V we will prove that B, (w, <) = 2“ for all @ > 1 in a way that provides
much more information.

Now, if 2° = 2¢ by applying Theorem I11.26 we get a bT-independent size 2%
family of functions from “w to “w, and therefore each size b subset is unbounded
with respect to <*. However, it is not clear how to convert that into a family of Borel
functions. The problem is the corresponding definition of A would involve [P(w)]®,
and so there should be no “nice” way to biject “w with A. Indeed, we see no easy

way to prove that B, (Yw, <*) = 2%,



CHAPTER IV

Impossibility of Coding by Continuous Functions

Consider the poset By(w, <) of continuous functions from “w to w ordered by ev-
erywhere domination. The purpose of this chapter is to prove that cf By(w, <) =
and discuss related problems. Combining this with the fact that 9 < 2“ is consistent
with ZFC, we conclude that ZFC cannot prove the following: for each A C w, Alice
can construct a continuous function f : “w — w such that if g : “w — w is a continu-
ous function which everywhere dominates f, then Bob can guess A from g using only
countably many guesses. This is an impossibility of coding result. The combinatorial
core of this chapter is that if we let ¥V denote the set of well-founded subtrees of
<“w, then cf (W, C) = 0. This in turn follows from there existing a morphism from
(B, BY', B¥) (which we will define soon) to (W, C). This chapter is not needed

to understand the chapters which follow.

4.1 Well-founded Trees and Continuous Functions
Recall from Observation 1.19 that

0 < cf By(“w, <*) < cf By(w, <) < 2%,
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Within this chapter, we will show that
cf Bo(w, <) <0,

which will imply

0 = cf By(“w, <) = cf By(w, <).
To be more concise in this chapter, we make the following two definitions:

Definition IV.1. Given o < wy, let W, be the set of well-founded subtrees of <“w

of rank < a. Let W :=W,, be the set of all well-founded subtrees of <“w.

Definition IV.2. Given o < wy, let B* be the set of all functions from <“w to «, let
B¢ be the set of all functions from <“w to [a]<¥, and let B* C B® x B} be defined
by

FBogiff (V¢ € <“w) f(t) € g(t).

In the definition above, we chose to use <“w as the domain of the functions instead
of w so that later we will not fuss with bijections between <“w and w.

Temporarily fixing o that satisfies w < o < wy, we summarize in the following
diagram the morphisms whose existence is either self-evident or we will prove in this
chapter. A one-sided arrow represents the existence of a morphism, and a two-sided

arrow represents the existence of a morphism in each direction.

Bo(wa S) -~ <W7 g> -~ <Bf17 Bil>Bwl>

|

Wa, ©) =— (B2, BE, B*) = (*w, <)
The key result is that there exists a morphism from (B*', B{*, B“') to (W, C). This,
combined with the fact that |[(B', B!, B“')|| = 0, implies that c¢f By(w, <) <0d. We
see no immediate reason for there to be a morphism from (W, C) to (B**, B, B¥1),

but we have not explicitly ruled out the possibility.
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We will now look closely at how continuous functions from “w to w are specified.

Definition IV.3. A barrier is a set S C ““w satisfying
(Ve e“w)FN ew)x [l eSs.

Proposition IV.4. A function [ : “w — w is continuous iff there exist a barrier

S C <“w and a function f: S — w satisfying
(Vz e “w)Vlew)z [l e S= f(z) = f(z 1)

Proof. The (<) direction is clear. For the (=) direction, suppose that f : “w — w
is continuous. This implies that for each x € “w, there is some shortest finite initial

segment s, of x such that for all y € “w extending s,., f(x) = f(y). Let
S = {s,:x €“w}
and f: S — w be defined by
f(s) := f(z) where x satisfies s = s,.

The function f is well-defined and the condition is satisfied. m

If S C <“w is a barrier, then the set of all initial segments of elements of S
is a well-founded tree. Because of this, one might expect that By(w, <) is related
to (W, C). This is indeed the case: as stated earlier, we will show that there are
morphisms in both directions between By(w, <) and (W, C).

Note that by associating well-founded trees to continuous functions from “w to w,
we may put these functions into a length w; hierarchy based on the ranks of these

trees.
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4.2 The Morphisms

To begin, recall some basic definitions for maps from one poset to another:

Definition IV.5. Let (P, <p) and (Q, <g) be two posets and let i : P — @ be a

function. We say that i is monotone if

(Vp1,p2 € P)p1 <p p2 = i(p1) <g i(p2),

1 is cofinal if
(Vg € Q)(3p € P)q <q i(p),

and 7 is convergent if it sends cofinal subsets of (P, <p) to cofinal subsets of (Q, <g).

In the literature, what we call a convergent map is sometimes called a cofinal
map (which is confusing). It is not hard to see that a map i : P — @ that is
both monotone and cofinal is also convergent. When we introduced the concept
of a morphism between posets in Section 1.2, we remarked that the existence of a
convergent map is equivalent to the existence of a morphism (in the same direction).

We will now connect By(w, <) with (W, C).

Proposition IV.6. The map Exit : W — By(w) from (W, C) to By(w, <) is both

monotone and cofinal. Hence, there is a morphism from (W, C) to By(w, <):

w C w
jT ﬂ lExit
Bo(w) < Bo(w)

Proof. Recall the definition of Exit(T") from Section 1.6. Certainly if 77 C Ty, then
Exit(7)) < Exit(73), which shows that Exit is monotone. To see that Exit is cofinal,
fix a continuous f € By(w). Let S C <“w be a barrier and f : S — w be a

function specifying f as in Proposition IV.4. Let S’ C <“w be a barrier such that
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each s’ € " extends some s € S and |s'| > f(s). Let j(f) be the set of all initial
segments of elements of S’. It is not hard to see that j(f) is a well-founded tree and
f < Exit(j(f)). Thus, Exit is cofinal. The pair (j, Exit) is a morphism from (W, C)

to By(w, <). O
For completeness, let us state the complementary result:

Proposition IV.7. There is a morphism from By(w, <) to (W, C). Hence, there

are morphisms in both directions between these relations.

Boy(w) < Bo(w)
ExitT ﬂ ij
4% - 4%

Proof. Let j : Bo(w) — W be defined as in the proof of the proposition above. It is

routine to verify that indeed (Exit, j) is a morphism. O

The following characterization of the (ordinary) dominating number is more suit-

able for handling well-founded trees:

Proposition IV.8. Let X and Y be any two countably infinite sets. Then 0 is the
smallest cardinality of a family A of functions from X to [Y]|<¥ such that for each

f: X =Y, there is some g € A satisfying (Vx € X)f(z) € g(z).

Proof. Without loss of generality X =Y = w. Given a set A satisfying the property

in the statement of this proposition,
{n—max f(n): fe A} C*w

is cofinal in (“w, <). Conversely, given a set D cofinal in (Yw, <),
{n—={m:m< f(n)}: feD}

satisfies the property in the statement of this proposition. O
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Here is the morphism version of the proposition above, using the particular sets

X and Y that we will use for the main combinatorial result of this section:

Proposition IV.9. Fiz o satisfying w < o < wy. There are morphisms in both

directions between (“w,<) and (B*, B}, B%).
Proof. This is routine using the ideas in the proof of the proposition above. n
The following is a curious result that builds upon the idea in Proposition IV.8:

Proposition IV.10. For each n € w, max{w,, 0} is the smallest cardinality of a
family A of functions from w to [w,]<¥ such that for each f :w — w,, there is some

g € A satisfying (Vn € w)f(n) € g(n).

Proof. We will prove this by induction. The n = 0 case follows by Proposition IV.8.
For the successor step, assume the proposition holds for some fixed n € w. We will
show that it holds for n + 1. Let A be the smallest cardinality of a family B of
functions from w to [w,41]<¥ such that for each f :w — wy,41, there is some g € B
satisfying (Vn € w)f(n) € g(n). By considering the constant functions from w to
Wn1, we see that A > w,, 1. By considering the functions from w to [w]<* C [w,11]<Y,
we see that A > 0. Thus, we have A > max{w,11,0}.

For the other direction, we will use the induction hypothesis. That is, for each
a < W1, there is some family A, of cardinality max{w,, 0} of functions from w to
[a]<“ such that for each f:w — a, there is some g € A, satisfying (Vn € w)f(n) €

g(n). Let A:=J

a<tnta A,. Given an f : w — wy,y1, there is some a < w,41 such

that Im(f) C a, so there is some g € A, C A satistying (Vn € w)f(n) € g(n). Doing
an easy calculation, we see that

|A| = Z max{w,, 0} = max{w, 1, max{w,,0}} = max{w,,1,0}.

a<<wn+1
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Hence, A < max{wy,1,0}. O
We will now prove the main combinatorial result of this section:

Proposition IV.11. Fiz « satisfying w < o < wy. There is a morphism (¢_, o)

from (B, BY, B*) to (W, C):

Be Be B2
T 1
Wa C W.

Proof. Given a well-founded tree T C <“w, each element of T has a rank. Let us
use the convention for this proof that leaf nodes have rank 1. This allows us to say
that elements of <“w — T have rank 0 (which we will do). Given a well-founded tree
T C <“w, let ¢_(T) : <Yw — « be the function that assigns each element of <“w its
rank.

Fix a function g : ““w — [a|<¥. We will soon define the well-founded tree
T = ¢"(9) C <“w. First, we will define a function h : <“w — « such that for all
t1,ty € “Yw satisfying t; C ty and t; # t, either h(ty) = h(tz) = 0 or h(ty) > h(ts).
Given such an h, it follows that {t € <“w : h(t) > 0} is a well-founded tree, and this

will be our T'. Let h(t) be defined by recursion on the length of ¢ as follows:
1) h(0) := max g(0);

0 if h(t) = 0,
2) h(t™n) =

max{f € g(t™n): B < h(t)} otherwise.
The function h is well-defined (we use the convention that max () = 0). It is also easy
to see that h satisfies the desired condition, so 1" is indeed well-founded.

We have now defined ¢_ and ¢,. All that remains is to verify that indeed

(VIh € Wa)(Vg € B}) ¢_(T1)B%g = T1 C ¢+(g).
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Fix any well-founded tree T} C <“w. Let f = ¢_(T7). That is, f is the rank function
of T1. Fix any function g : ““Yw — [a]<¥ satisfying (Vt € <“w)f(t) € ¢g(t). Let
T = ¢4 (g). We will show that T} C Ty, and then the proof will be complete.

Let h : <“w — « be the function defined from ¢ as above. If we show
(vt € <“w) f(t) < h(t),

then we will have T3 C Ty, because T} = {t € ~“w : f(t) > 0} and T, = {t €
<“w : h(t) > 0}. We will show this by induction on the length of t. The base case is
simple: f()) < maxg(0) =: h(D), because () € g(0). For the successor step, assume
f(t) < h(t). Fix n € w. We will show f(t7n) < h(t"n). There are two cases. The
first case is that f(¢) = 0, which implies f(¢"n) = 0, so certainly f(t"n) < h(t"n).
The other case is that f(¢) > 0. When this happens, f(t"n) < f(¢). Combining this
with the induction hypothesis that f(¢) < h(t) gives us that f(¢"n) < h(t). Since

also f(t™n) € g(t"n), we have
f(t™n) <max{p € g(t™n): 5 <h(t)}=h({t"n).
The proof is now complete. O]

For completeness, we prove a partially complementary result:

Proposition IV.12. Fix « satisfying w < a < wy. There is a morphism from

(Wa,C) to (B, B, B2).

Proof. We showed in Proposition IV.9 that there is a morphism from (“w,<) to
(B%, B, B*). Hence, since morphisms can be composed together, it suffices to show

that there is one from (W,, C) to (“w, <):

=
IN<=—=IN
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Given f € “w, let i(f) € W11 € W, be a tree which contains all sequences of the

form
f(n)

A/—/‘\
(n)~(0,...,0)
forn € w. Given T € W,, let j(T') € “w be the function such that for each n € w,

J(T)(n) is the largest k satisfying

The pair (i, j) is the desired morphism. O

Incidentally, Proposition IV.11 was discovered by first looking at whether each
well-founded tree T} C <“w in the Sacks forcing extension is a subset of one such
tree the ground model (with the hope of showing cf By(w, <) < 2¢ in the Sacks
model). This was shown to be the case by using the Sacks property. That is, the
ground model can guess the rank of each node of 7). The Sacks property was then
replaced with the weaker property of being “w-bounding (which we will define in the
next section). At this point, no other facts about the forcing were used. Then, the
combinatorics of what was “really going on” was extracted. This is an example of

forcing being used to discover a ZFC theorem.

4.3 Applications

Proposition IV.11 immediately allows us to prove some interesting results.
Theorem IV.13. For each « satisfying w < a < wy, ¢f (W, C) =0.

Proof. Let D be a size 0 family of functions from <“w to [a]<* such that for each

[ <“w — «, there is some g € D satisfying (Vt € <“w)f(t) € g(t). Let ¢, be the
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function given by Proposition IV.11. Then

A:={o(g): g € D}

is cofinal in (W, C) of size at most 0. On the other hand, since w < a, it is clear that
cf(W,,C) > 0. For a formal explanation of this, we showed in Proposition IV.12

that there is a morphism from (W,, C) to (“w, <). O
We can now compute cf By(w, <) and cf By(“w, <*) as promised.
Corollary IV.14. cf By(w, <) = cf By(Yw, <*) = 0.

For the skeptic who questions the need for the generality given by all these mor-
phisms, we state some practical results which make use of them. Indeed, it is good
practice to state results in terms of morphisms whenever possible, because this gen-
erality is required for certain proofs.

Recall the following:

Definition IV.15. Let M and N be transitive models of ZF with M C N. We say

that N is “w-bounding over M if (“w)™ is cofinal in ((*w)?, <).

The morphisms we constructed provide useful information when V' is “w-bounding

over M and wi! = wy:

Theorem IV.16. Let M be a transitive model of ZF such that V is “w-bounding
over M. Assume also that wM = w;. Given any well-founded tree Ty C <“w, there

is some well-founded tree Ty C <“w in M satisfying Ty C 1.

Proof. Let T} C <“w be an arbitrary well-founded tree. Fix its rank o < w;. By

combining Proposition IV.11 and Proposition IV.9, we get a morphism (i, j) from
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<ww’ §> to <Wa+17 g)

w w

w < w
(R
Wa+1 g WaJrl-

Since V' is “w-bounding over M, there is some g € (“w)™ satisfying i(Ty) < g. Let
Ty := j(g). Since (i,7) is a morphism, T3 C T. Once we show Ty € M, we will be
done.

Being a model of ZF, M has its own version
7 Cw)™ = W)

of the function j. The function j is certainly Borel, which gives us enough absolute-

ness to conclude that j | M = ™. Hence,

so Ty, e M. ]

The wM = w; hypothesis in the theorem above is certainly necessary, because
wM is the supremum of the set of ranks of well-founded subtrees of <“w in M, and

Ty C Ty implies rank(7}) < rank(73).

Corollary IV.17. Let M be a transitive model of ZF such that V is “w-bounding
over M. Suppose also that wM = w,. Then for each Borel code ¢y for a continuous
function from “w to w, there is a Borel code co in M for a continuous function such

that the function coded by co everywhere dominates the function coded by c;.

Proof. Let ¢; be a Borel code for a continuous function f; from “w to w. By Propo-
sition IV.6, there is a map i : W — By(w) from (W, C) to By(w, <) that is monotone

and cofinal. Since i is cofinal, fix a well-founded tree T} C <“w satisfying f; < i(717).
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By the previous theorem, fix a well-founded tree T, C <“w in M such that T} C Ts.
Since 4 is monotonic, i(71) < i(73).

Now, since M is a model of ZF, it has its own version of i, which we denote by
iM. Within M, there is a Borel code ¢y for iM(Ty). In V, ¢y codes fo :=i(Ty). We
now have

fi <i(h) <i(Ty) = fo,

and the proof is complete. n

The cost of not using morphisms is having multiple proofs with duplicated com-
binatorial content. That is, if we proved both of the above theorems directly, then

the content of Proposition IV.11 would be written twice.

4.4 Nonexistence of Nicely Definable Morphisms

We close this chapter with a negative result: there cannot exist a “nicely” definable
morphism (¢_, ¢4 ) from (“w, <) to (B, B}', B“'). For example, if we assume L(R)
satisfies AD, then since there cannot be an injection from w; into “w in L(R) and (w;
is regular)“®) there cannot exist such a morphism (¢_, ¢, ) where ¢_, ¢, € L(R).
In fact, an analysis of the proofs below show that there cannot exist a (¢_, ¢, ) where

- € L(R).

Proposition IV.18. (ZF) Assume there is no injection from wy into “w and wy is

reqular. Then there is no morphism from (Yw, <) to (wy, <).

Proof. Assume w; is regular. Let (¢_, ¢, ) be a morphism from (“w, <) to (wq, <):

S

IN<==IA

Ww1.
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We will construct (in ZF) an injection from w; into “w. It suffices to construct a size
wy set A C wy such that ¢_ | A is injective. First note that |Im(¢_)| = w; because if
not, then by the pigeon hole principle (since w; is regular), there would be a single
g € “w such that ¢_(a) = g for w; many o < wy. Since (¢_, ¢4 ) is a morphism, this
would imply that o < ¢4 (g) for w; many o < wy, which is clearly impossible.

We may now inductively define A := {a, : @ < w;} as follows: let ag := 0. For
each a > 0, let a, < w; be the smallest ordinal such that ¢_(a,) # ¢—(ag) for all
f < a. We will never get stuck because |Im(¢_)| = wy. By construction, ¢_ | A is

injective. [

Proposition IV.19. (ZF) Assume there is no injection from wy into “w and w; is

regular. Then there is no morphism from (Yw, <) to (B*, BY', B“1).

Proof. We will prove the contrapositive. Let (¢_, ¢, ) be a morphism:

Wiy S Wi
¢>—T ﬂ l¢+
B“t B*1 Bil.

There is also a morphism (¢_, ¢, ) from (B, BY', B“") to (wq, <) given by ¢_(«a) :=

(t = a) and ¢ (g) = sup Uye<w,, 9(1):

B‘i)l Bwi Bil

o ﬂ Jo

W1 Ww1.
By composing these morphisms together, we get one from (Yw, <) to (wy,<). We

now apply the proposition above to complete the proof. O



CHAPTER V

Everywhere Domination Coding Theorems

In this chapter, we will see that B,(w, <) for @ > 1 has a completely different
nature than By(w, <). First, we will show that while well-founded trees were the key
to understanding By(w, <), clouds are the key to understanding B;(w, <). Clouds
allow us to convert the problem of computing cf By (w, <) into a problem that is more
combinatorial. This quickly leads to the proof that cf B, (w, <) = 2¢ for each o > 1.
The essential observation is that for each a € “w, if g : “w — w is any function which
satisfies Exit([[a]]) < g, then a is A} in a predicate for g. In particular, if ¢ is Borel,
then a is Al in any code for g. We may view this as an infinite coding result: Alice
encodes her message a € “w into the function f = Exit([[a]]), and when an enemy
steps in and produces a function g which satisfies f < g, then Bob can guess a from
g by making countably many guesses: guessing each real which is A{ in a predicate
for g.

The encoding a — Exit([[a]]) we may call vertical coding. There is a different
natural encoding scheme we may use: horizontal coding. With horizontal coding, we
easily get a new proof that cf All(w, <) = 22° by showing that for each A C “w, there
is a function f : “w — w such that if g : “w — w satisfies f < g, then A is Al in a

predicate for g. The two methods are incomparable in that they generalize in different

84
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but important ways (and so we must keep both methods). Unfortunately, there is not
one single unifying coding theorem we may prove and then derive all related coding
results from that. The contribution of this chapter is a general argument which can
be enhanced in various ways, but all enhancements cannot be made simultaneously.
We have taken the approach of presenting each argument in a self contained way at
the expense of being slightly repetitive.

A desirable feature of our prototypical coding result is that it only requires

(Va € (“w)™) f(z) < g(2)

instead of f < g. This generality is important because it gives rise to applications to
weak distributivity laws for complete Boolean algebras. After we sufficiently under-
stand B, (w, <) for a > 1, we change gears to apply the arguments to combinatorial
set theory. That is, we apply our coding arguments to functions from "\ to « for
infinite cardinals k and A. In this context, we get the “main coding theorems” which
quicky give us the implications for weak distributivity laws for complete Boolean
algebras.

Specifically, if B is a complete Boolean algebra which is weakly (A“, w)-distributive
for an infinite cardinal A, then B is (), 2)-distributive. Next, if x is a weakly com-
pact cardinal, B is weakly (2", k)-distributive, and B is («,2) distributive for each
a < K, then B is (k, 2)-distributive. Finally, if B is weakly (2“1, w;)-distributive, B

is (w, 2)-distributive, and 1 Ik (wy < t), then B is (wy, 2)-distributive.

5.1 Clouds and Baire Class One Functions

Recall that Bi(w, <) is the set By(w) of Baire class one functions from “w to w

ordered pointwise by <. That is, By(w) is the set of pointwise limits of continuous
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functions from “w to w. There is an apparently easier to understand cofinal subset

of By (w, <):

Definition V.1. F; C B;(w) is the set of all functions each of which is the pointwise

maximum of an w-sequence of elements of By(w).

This is indeed cofinal because if g € B;(w) is the pointwise limit of the sequence

of continuous functions (f,, : n € w), then
h(z) :== max{f,(x) : n € w}

is in F; and g < h.

In fact, if we start with By(w) and alternate between taking pointwise maximums
and pointwise minimums, then after w, stages we will have precisely all Borel func-
tions from “w to w. This is because if (f,, : n € w) is a sequence of functions from

“w to w and for each x the limit lim,,_,, f,(x) exists, then for each = we have

lim f,(z) = maxmin f,,(x) = min max f,,(z).
n—00 n  m2>n n  m>n

This shows that the hierarchy we get by alternating between taking maximums and
minimums is closely related to the Baire hierarchy. For example, they are equal at
limit stages.

We should point out that there is another way to construct the Baire hierarchy [8].
That is, first construct the smallest collection of filters on w starting with the cofinite
filter and closed under sums V-> . U;. Then the collection of Borel functions is the
same as the collection of filter limits, using filters in this collection, of continuous
functions.

The reason for introducing F is because it has a simple combinatorial character-

ization in terms of clouds which is useful for us. In the same way that well-founded
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trees were the right way to understand By(w, <) (Propositions IV.6 and IV.7), clouds
are the right way to understand (Fy, <) (and therefore cf B (w, <)). We use the con-

vention that max () = 0.

Definition V.2. A set C' C <“w is called a cloud if for each x € “w,
{lew:zleC}
is finite. The function Rep(C) : “w — w is defined by
Rep(C)(z) :=max{l:x [l € C}.

That is, a subset of <“w is a cloud if its intersection with each path through <“w
is finite. The function Rep(C) (“Rep” for “Representation”) outputs the greatest
level at which x hits C. This can be generalized to handle functions from *X to x,
where k is a cardinal and X is a set (this is precisely Definition 1.29 given in the

introduction). Here is the promised characterization:

Proposition V.3. A function f :“w — w is in Fy iff there is a cloud C C <“w and

a function f : C' — w such that for all x € “w,

fx)=max{f(z1):x1leC}.

Proof. First, if there is such a cloud C and a function f, then for each ¢ € C' define
fe 1 “w — w to be the continuous function

fle) ifxz e,
fe(z) =

0 otherwise.

It is clear that for each z, f(z) = max{f.(z) : c € C}, and so f € F;.
For the other direction, suppose f € Fi. Let (f, : n € w) be an w-sequence of

continuous functions such that for each z, f(x) = max{f,(x) : n € w}. We may
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assume, without loss of generality, that for each z, f, () < f,,(z) whenever n; < na.
For each n € w, by Proposition IV.4 let S, C <“w be a barrier and f, : S, — w be
a function such that f,(z) = f,(t) whenever z extends t and t € S,. We may also
assume that S, properly extends S,, whenever n; < ny, by which we mean for all
T € “w, the level where x hits S,,, is strictly below the level where z hits 5,,,. Hence,
the sets S, are pairwise disjoint.

For each n > 0, define the set S, C S, as follows:
S i={ceS,: (Ve D) fulr) > fu(x)}.

Note that also

S, ={ceS,:Bxdec) fulz) > fui(x)}.
Define C':= Sy UJ,,~( S,,- We claim that C'is a cloud. Let x € “w be arbitrary. We
must show that x hits C' at only finitely many places. If not, then by construction
{fn(x) : n € w} is unbounded, which contradicts the fact that f is well-defined at x.
Hence, C is a cloud, and we may define f : C' — w in the natural way: f(c) := f,(c)

where n is the unique number satisfying ¢ € S,. It is not difficult to check that f is

as desired. O

Notice in the construction above that f(tl) < f(tg) for all t,t, € C with ¢; a
proper initial segment of t5. The collection of clouds itself has structure. There is a

natural wi-length hierarchy into which all clouds may be placed.

Definition V.4. Given a < wq, a cloud C'is an a-cloud if v is > the rank of the

well-founded tree that is the set C'U {0} ordered by end-extension.

Here we use the convention that leaf nodes have rank 0. Thus, if each x € “w hits
C at most 1 time, then C'is a 1-cloud. The functions represented by clouds form a

cofinal subset of F; which is simpler to understand.
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Proposition V.5. For each f € Fi, there exists a cloud C C <“w satisfying f <
Rep(C'). Moreover, if f is specified by a cloud Cy C ~“w and a function f Cr—w
as in the proposition above, then if Cy is an a-cloud, then C' can be chosen to be an

a-cloud.

Proof. Let Cy C <“w and f: Uy — w specify f as in the proposition above. Assume
Cy is an a-cloud. Without loss of generality, C is infinite. The idea of how to
proceed is simple: we replace each node ¢ € C; with an appropriate set of nodes
extending it. We must be careful to ensure the resulting cloud C'is indeed an a-cloud.

First, let e : w — C be a bijection that respects the ordering on C'y by extension.
That is, for all ny,ny € w, if e(ny) C e(ny), then n; < ny. We may easily define a

function [ : w — w that is both strictly increasing and such that for all n € w,
[(n) > f(e(n)).
Given such an [, define the function S : w — P(““w) as follows:
S(n):={c €' ™w:d Te(n)}.

That is, S(n) is the set of all extensions of e(n) on level [(n). We may now define C'

as follows:

C:=JSm).
new
It is not difficult to see that C'is a cloud. We have f < Rep(C') because I(n) > f(e(n))
for all n € w. Moreover, since we were careful (by requiring e to be order respecting
and [ to be strictly increasing), the tree that is the set of elements of C' ordered by

end-extension has the same rank as the tree corresponding to Cy. Since Cf is an

a-cloud, so is C'. O

Each Baire class one function from “w to w is < one represented by an a-cloud

for some o < wy. It can be shown that the hierarchy of functions represented by
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clouds does not collapse, in the sense that for each a@ < wy, there is some function
represented by an a-cloud that is not < any function represented by a S-cloud for
B < a. We will not dwell on this hierarchy, but instead focus on the very bottom
level. The simplest (non-trivial) kind of cloud is a 1-cloud. We have an alternate
characterization of functions represented by 1-clouds in terms of the Exit function
of Definition 1.28.

If T C <“w is well-founded, then Exit(T") is continuous. By Proposition IV.6,
for each continuous f : Yw — w there is some well-founded 7" C <“w satisfying
f < Exit(T'). Dropping the requirement that 7" be well-founded we get precisely the

functions represented by 1-clouds:

Proposition V.6. Given a function f : “w — w, f = Rep(C) for some 1-cloud C

iff f = Exit(T) for some tree T C ““w.
Proof. It f is represented by a 1-cloud C, then the set
T:={te~“w: (VW Ct)t ¢C}

is a tree and f = Exit(7T).

On the other hand, if f = Exit(T") for some tree T C <“w, then the set

C={ce¥w:cdTANNMLCc)t#c=>teT}

is a 1-cloud and it represents f. ]

Now, functions of the form Exit(7T) where T is a leafless tree with only one branch
are the simplest functions which are not continuous. Given a € “w, recall that

[[a]] € <“w is the set of initial segments of a:

la]] i={al:1€w}.
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Hence,

0 if v = a,
Exit({la]])(z) =
min{l: x(l — 1) #a(l — 1)} otherwise.

That is, Exit([[a]])(x) is the level at which x deviates from a. Informally, Exit([[a]])

is a discrete analogue of the function f : R — R defined as follows (for some r € R):

0 ifx=r,
flz) =

1
T—r

otherwise.

In the next section, we will see that all functions of this simple form cannot be
everywhere dominated by fewer than 2¥ functions (of any complexity whatsoever).
This is because a dominator of such a function must inherently contain the informa-

tion of the single path.

5.2 Basic Construction (Vertical Coding)

We will now begin where the last section ended, and present the basic “vertical

style” coding argument in its simplest form:
Proposition V.7. Fiz a € “w. If M is a transitive model of ZF such that some
g: (“w)™M — win M satisfies
(V€ (*w)™) Exit([[a]]) () < g(z),
then a € M.

Proof. Let M be any transitive model of ZF such that a ¢ M. Consider any g :
(“w)™ — win M. Suppose, towards a contradiction, that (Vz € (“w)™) Exit([[a]])(x) <

g(x). Consider the following set:

B:={te~“w:g(x)>|t| for all z It in M}.
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Since B need not be a tree, let us define the tree T' of those elements of B all of
whose initial segments are also in B. Since g € M, also T' € M. There cannot be
any x € [T] in M, because if there was such an z, then we would have g(x) > [ for all
| € w, which contradicts the fact that g is well-defined. Hence, (T is well-founded)™.
Since being well-founded is absolute, T is well-founded.

On the other hand, (VI € w)a | | € B. Let us explain. Fix [ € w. Any z € (“w)M
that extends a | [ differs from a (because a ¢ M). Thus, x must first differ from a
at some level I’ > [, so g(x) > Exit([[a]])(z) = I'. Thus (VI € w)a | | € B, and we

have (VI € w)a [l € T. Therefore a € [T], so T is not well-founded. O

The above proof is by contradiction, because Theorem VII.28 can only be rea-
sonably proved by contradiction, and we want to show the difference between the
arguments. This proposition implies that for each a € “w, if ¢ : “w — w satisfies
(Vo € (“w) 9 Exit([[a]])(z) < g(x), then a € L[g]. Certainly we have the following
morphism (using notation which should be clear and which accompanies what we

explained in Section 1.2):

(5.1) Exit([[a]]) < g
|l
a € Lig],

where we temporarily define f <' ¢ by (Vo € (“w)™9) f(z) < g(z).

A central aspect of the proposition above is that M need not include all of “w.
This contrasts with Theorem VII.28, where we really do need all reals available. That
is, we expect it to be extremely difficult (if not impossible) to prove that for each
a € “w, there is some Borel f : “w — “w such that if M is a transitive model of ZF
containing some Borel g : (“Yw)™ — “w satisfying (Vo € (“w)M) f(z) <* g(z), then

a € M. Also, there is no burning need to generalize Theorem VII.28 in this way,
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whereas this generality of the proposition above leads to the important application
to weak distributivity laws for complete Boolean algebras (Section 5.8).

Consider the bottom relation “a € L[g]” of (5.1). If g is coded by some ¢ € “w,
then a € L[g] implies a € L[c|. The relation “a € L|c|” is called the constructibility
relation between reals. Constructibility is a convenient relation because models of
ZF have many closure properties and we may apply absoluteness arguments as done
in the proposition above. Indeed, the results in this thesis were all discovered by
treating constructibility as the essential relation, moving down to finer relations as
a separate step.

Moving down to finer relations is needed to complete the overall picture. A deeper
analysis of the proposition above allows us to strengthen the conclusion from simply
a € M to a being explicitly definable in M by a formula. If we proceed as before and
define T" to be the set of elements of B all of whose initial segments are in B, then
we will encounter a problem. Instead, what is relevant is the poset of elements of
B ordered by extension. We dignify this generalization as a theorem, and it implies
Theorem [.22 from the introduction. It is essentially the strongest coding theorem

we can expect to prove where we encode real numbers into functions from “w to w:
Theorem V.8. Fix a € “w. If M is a transitive model of ZF such that some
g: (“w)™M — win M satisfies

(Vo € (“w)™) Exit([[a]]) () < g(=),
then a is Al definable in M using g as a predicate.

Proof. Fix M and g satisfying the hypothesis of the theorem. Define B C <“w in M
exactly as in the proposition above. Note that B is defined (in M) by a [T} formula

that uses g as a predicate. That is, B is IT} in g. We claim there is some [ € w
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satisfying (VI' > ) a [ I' ¢ B. If not, the poset of elements of B ordered by extension

would be ill-founded, and therefore would be ill-founded in M, so there would exist

r € (“w)M satisfying (3%’ € w) g(x) > I, which is impossible. Now, fix such an .
We claim that for each " > [, a(l') is the unique n satisfying (a [ I')"n ¢ B.

Indeed, since Exit([[a]]) < g, for each I’ > | we have
(Vnew)a(l') #n=(al')"n € B.

The other direction is given by the property we arranged [ to have. Thus, we have

the following definition (in M) for a:

all) iU <1,
a(l') =
n if ! >1and (Vo' #n)(VYx J(a [ )" n' in M) g(z) >+ 1.

Since (a(l') : I' < I) can be coded by a single number, we have a IT definition (in

M) for a which uses g as a predicate. We also have a %] variant:

all) il <l
a(l') =
n if '’ >land (3 J (a [ )" nin M)g(x) <l + 1.

Thus, a is Al definable in M using g as a predicate. O

Our picture is now complete, and we see four relations stacked on top of each

other:
Bxit(fla)) < g
Bxit([a) < g
a <al g
a c Llg].

Now we may compute cf B, (w, <) for all a > 1:
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Corollary V.9. Fiz o > 1. We have
cf By (w, <) =2¢.

Proof. By what we have said, there is certainly a morphism from B, (w, <) to (*w, <at).
The cofinality of (“w, < A%> is 2% because each real has only countably many reals

Al reducible to it, and we are done. ]

It goes without saying that the arguments of this section carry over to functions
with domain “2 instead of “w. The encoding a — Exit([[a]]) we informally call verti-
cal coding, because the information inherent within a is laid out vertically in the tree
<“w. We will present a different encoding scheme in Section 5.4: horizontal coding.
As we will see, neither method is strictly better than the other, and some situations

require us to use one but not the other.

5.3 Blow-Up Trees

The purpose of this section is to analyze exactly how sloppy we can be with our
encoding scheme a — f so that still a € L[g] whenever f < g. The reader may skip
to the next section with no loss of continuity. We saw that the scheme a — Exit([[a]])

worked, but we used the conspicuously defined set
B={t e ~“w:g(x) > |t| for all z Tt}

in our argument. We shall see that indeed we can be quite sloppy, and our observa-
tions may be of use to an analyst.

To begin, let us temporarily think of elements of “w as simply points in a space
rather than paths through a tree, and describe properties of functions from this

point of view. Recall the notation f“(U) := {f(z) : x € U}. What we say applies
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to functions from an arbitrary uncountable Polish space X to R, but let us stick to

functions from “w to w to keep our discussion focused.

Definition V.10. a € “w is a blow-up point of f : “w — w if f“(U) is unbounded
for each neighborhood U of a. We say that a is a pure blow-up point of f if for each

n € w, there is some neighborhood U of a such that for all z € U — {a}, f(z) > n.

That is, a is a blow-up point of f : “w — w iff limsup,_,, f(z) = w and a is a
pure blow-up point iff lim,,, f(z) = w. Recall that given ¢t € <“w, [t] is the set of
elements of “w which extend t. When we investigated continuous functions, blow-up

points did not appear:

Proposition V.11. f:“w — w is dominated by a continuous function iff f has no

blow-up points.

Proof. 1f f : “w — w is dominated by a continuous function ¢ : “w — w, then given
any r € “w, there is some neighborhood U of x such that ¢ is constant on U, so x
cannot be a blow-up point of f.

On the other hand, suppose f has no blow-up points. For each x € “w, there
is some shortest finite initial segment s, of x such that f“([s,]) is bounded. Let

g : “w — w be the function

g(x) := max f*([s]).

Since (Vo € “w) f(x) € f“([sz]), we have f < g. Furthermore, one can check that

the sets [s,] form a partition of “w, so ¢ is continuous. O

We first encounter blow-up points when looking at F; functions represented by
1-clouds. Recall that by Proposition V.6, functions represented by 1-clouds are

precisely those functions of the form Exit(7") for some tree T' C <“w.
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Proposition V.12. f : “w — w is dominated by a function represented by a 1-cloud

iff f(z) =0 for each blow-up point x of f.

Proof. Suppose f : “w — w is dominated by an F; function g : “w — w represented
by a 1-cloud. By the definition of a 1-cloud, g(x) = 0 for each blow-up point = of
g. Since g dominates f, every blow-up point of f is a blow-up point of g. Hence,
f(z) = 0 for each blow-up point of f.

For the other direction, suppose f : “w — w is such that f(x) = 0 for each blow-
up point z of f. Let C, := {t € “w : f*([t]) is bounded but f“([t']) is unbounded
for every proper initial segment ¢’ of ¢}. Notice that C, is a 1-cloud. Let §: Cy — w

be defined by

g(t) := max f*([t]).

Let g : “w — w be the function specified by C,; and g : C;, — w as in Proposition V.3.
That is, g(z) = max{g(z [ ) : = [ | € C,}. By that proposition, g is Fi, and by
applying Proposition V.5 to the 1-cloud Cj, and function g, we get a 1l-cloud C

satisfying g < Rep(C). O

Now that we have characterized which functions are everywhere dominated by
either continuous or Baire class one functions, let us return to our discussion of
encoding reals into functions. One might make the mistake of thinking the only
crucial part of Proposition V.7 was that the function Exit([[a]]) had a blow-up point
(the point a) not in the ground model. The following simple observation shows that

more is needed:

Counterexample V.13. Let M be a transitive model of ZF. There is a Borel
function f:“w — w such that f | M € M, and yet for each a € “w (including those

a not in M) and each neighborhood U of a, f“(U N M) is unbounded.
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Proof. Let f : “w — w be defined by f(z) := 0 if (3°n)z(n) # 0, and f(z) := n if
n is the first number such that x(m) = 0 for all m > n. Certainly, f is Borel and
f T Me M. Let S be the set of all x € “w satisfying (V*°n) z(n) = 0. We have that
S C M. Given any y € “w and any neighborhood U of y, f“(U N S) is unbounded,

and so f“(U N M) is unbounded. O

The fact that a is a pure blow-up point of Exit([[a]]) in Proposition V.7 is the
crucial point. To push the argument to work with a more general function f, we

need to replace the set B within the proof with the more technical poset (W, <):

Proposition V.14. Let M be a transitive model of ZF. Let f : “w — w and a € “w

be such that for each n € w, there is some neighborhood U of a satisfying
VeeUNM —{a})n < f(x)

(which happens when a is a pure blow-up point of f). Let g : (*w)™ — w in M

satisfy
(Vo € (*w)™) f(z) < g(2).

Then a € M.

Proof. For each n € w, let
Spi={te~“w:g(x)>nforall x J¢tin M}.
Notice that each <“w — S, is a tree. Let (W, <) be the poset
W={{to, ..., tn) :nEWALy E Sy N ...\ t, € Sy Ntg T ... C 8, },

where wy < wq iff wy is a proper initial segment of w,. First, note that W € M.

This is because g € M, and therefore (S,, : n € w) € M. Next,

(W, <) is well-founded)™.
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This is because if there was some infinite decreasing sequence through W in M, then
there would exist z € (“w)™ as well as (t, € S, : n € w) € M satistying t,, C z for
all n € w. This would imply that g(x) > n for all n € w, which is impossible.

Since (W, <) is well-founded in M and being well-founded is absolute, W is indeed
well-founded. Now, assume towards a contradiction that a ¢ M. Suppose we are
given (to,...,t,) € W satisfying to C ... C ¢, C a. By hypothesis and since a ¢
M, there is some neighborhood U of a such that (Vx € UN M)n < f(z). Pick
tni1 C a so that t, C t,4q and [t,.1] € U. Now, for any = € [t,y1] N M, n <
f(z) < g(x). Thus, t,41 € Syy1. Hence, (tg,....,tny1) € W and (to,...,tn11) <
(to, ..., tn). By applying this construction inductively starting with (), we obtain an
infinite decreasing sequence through (W, <). This contradicts (W, <) being well-

founded, and the proof is complete. n

The proof above illustrates a common idea used in descriptive set theory. Namely,
(W, <) is a tree of attempts to build something which does not exist. This tree was
hidden in our previous arguments because it was obscured by a more prominent tree:
<“w. Now, (W, <) has two essential properties. First, it cannot have any branches
(infinite decreasing sequences), because given a branch there must exist a point x
satisfying g(x) > n for all n, which is impossible. Second, the way [ is defined makes
it so if g dominates f, then (W, <) contains many nodes. We might want to modify
the definition of (W, <) to handle other functions f, but we need to make sure the

first property is still satisfied. The following definition accomplishes this:

Definition V.15. Let X be a set and g : X — w be a function. A poset (W, <) is

a blow-up tree for g if the following conditions are satisfied:

1) each element of W is a finite decreasing sequence (Cy, ..., C,) of subsets of X
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where for each £ satisfying 0 < k < n,

(Vx € Cy) g(z) > k;

2) W is closed under initial segments;
3) if wy,wy € W, then wy < wy iff wy is a proper initial segment of wy;

4) It (Cy) = (Cy, C1) > ... 1s an infinite decreasing sequence of elements of W, then
mnEw C” 7& @

By conditions 1) and 4), a blow-up tree is necessarily well-founded. For demon-
stration purposes, we will repeat the proof of the proposition above but for R instead

of “w and with a slightly weaker hypothesis:

Proposition V.16. Let M be a transitive model of ZF. Let f : R — w be a function
and let a € R be a point such that for each n € w, there is some closed set C'

containing a with a Borel code in M satisfying
Vee CNM—{a})n < f(x).
Suppose there is some g : RM — w in M satisfying
(Vr € RM) f(z) < g().
Then a € M.

Proof. Assume, towards a contradiction, that there is such a g but a ¢ M. Within
M, we will define a blow-up tree (W, <) for g. Let W be the set of all finite decreasing
sequences {Cy, ..., C,,) of compact subsets of RM such that for each k € [0,n] and
x € Cy, g(x) > k. Conditions 1) to 3) of Definition V.15 are satisfied automatically.
Since the intersection of an infinite decreasing sequence of compact sets is nonempty,

4) is satisfied, so (W, <) is indeed a blow-up tree for g.
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Since it is a blow-up tree, it is well-founded in M. Since being well-founded is
absolute, it is indeed well-founded. On the other hand, it is not difficult to argue
from the hypothesis of the theorem that (W, <) must have an infinite decreasing

sequence, and so is not well-founded. This is a contradiction. O

As a corollary, we have a result of potential interest to an analyst. Our choice of

(r —a)~! as an example is arbitrary:

Corollary V.17. Fix a € R. Let f : R — R be the function

0 if x = a,
1

r—a

otherwise.

If g : R — R is a function which everywhere dominates f, then a € Llg]. Hence, if

g is also Borel, then a € Lc| where ¢ is any Borel code for g.

Proof. 1f g is Borel and ¢ is a code for g, then L[g] C L[c]. Thus, it suffices to prove

the first claim. Define the function f : R — w by

Let g : R — R be any function which everywhere dominates f. Note that g N L[g] €
L[g]. Being a transitive model of ZF, L[g] contains all rational numbers, and therefore
contains all Borel codes for closed intervals with rational endpoints. Note that for

each n € w, there are rational numbers r1,ry € Q satisfying a € [r1, 73] and

(Vz € [r1,72] — {a})n < f(2).

We may now apply the proposition above with L[g], f, and ¢ L[g] to conclude that

a € Llg|. O
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Let us remark that there is a limitation to how sloppy we can be in creating a
function all of whose dominators construct a € “w. Specifically, suppose a € “w and
f : “w — w are such that for each n € w and each neighborhood U of a, there is
some open (and non-empty) U, C U satisfying (Vo € U,) f(z) > n. It does not

follow that if ¢ : “w — w satisfies f < g, then a is definable from ¢ in any sense.

5.4 Modifying the Encoding (Horizontal Coding)

In Section 5.2, we saw how a real a € “w is encoded into the function Exit([[a]])
(in what may be described as a vertical way). For technical reasons, which will be
clear in Section 5.6, we need an alternate coding scheme. Let X be a set and A C X.
Let fa :“X — w be the function

0 if (Ml ew)x(l) & A,

fa(z) =
I+1 ifa(l) € Aand (V' < Da(l') & A.

Note that f4 = Exit(7T") where T is the tree of all ¢t € <“w satisfying
(V' € Dom(¢))t(l') & A.

For each t € T,

A={ze X :t72¢T}.

This justifies calling the encoding scheme A +— f4 horizontal coding, because the
information within A is laid out horizontally in the tree <“X. Equivalently, f1 =
Rep(C') where C' is the cloud of all t € <“w satisfying ¢(|t| — 1) € A but (VI' <
[t|] —1)t(l') € A. Thus, when X = w, f, is represented by a 1-cloud, and is therefore

F1, and hence is Baire class one.
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When X = w, we have an analogue of Theorem V.8 but with a different proof.
However, when X = R, we get an encoding scheme for subsets of R rather than
elements of “w, which is beyond the scope of vertical coding. The point is that while
there are only |X|* paths through the tree <“X there are 2/X| subsets of X. Very

informally, we may say “there is more room to store information horizontally”.

Proposition V.18. Fiz a set X. Fix A C X. Let fa:“X — w be defined as above.
Let M be a transitive model of ZF with X € M and containing some g : (*X)M — w
satisfying

(Vo € (“X)Y) fa(z) < g().

Then A € M. Moreover, there is some t € <X satisfying
A={ze X :g(x) > |t|+1 forallx It"z in M}.
Proof. 1t suffices to show the second claim. As in our previous arguments, define
B:={te~“X :g(x) > |t| for all x T ¢ in M}.
We must find a t € <“.X satisfying
A={z€e X :t"z € B},

and we will be done. By the hypothesis on g and the definition of f4, for each z € X,
z € A implies (z) € B. If conversely for each z € X, (z) € B implies z € A, then we
have

A={z€ X :(z) € B},

and we are done by defining ¢ := (. If not, then fix some xy € X satisfying (z,) € B

but xy & A.
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Again by the hypothesis on g and the definition of f,4, for each z € X, 2 € A
implies (xg, 2) € B. Here it is important that o ¢ A. Again, if the converse holds

that (zg, z) € B implies z € A, then
A={z¢€ X :(x,2) € B},

and we are done by defining ¢ := (x). If not, we may fix 1 € X satisfying (xo, z1) €
B but z; € A. We may continue like this, but we claim that the procedure terminates
in a finite number of steps.

Assume, towards a contradiction, that it does not terminate. The sequence

€T = <3§'07 xy, )

we have constructed has all its initial segments in B. However, x need not be in
M. We handle this situation as before: let T' be the set of all elements of B all of
whose initial segments are also in B. The tree T is ill-founded because z is a path
through it. Since being ill-founded is absolute, 7" has some path z’ in M. We now

have (VI € w) g(«’) > [, which is impossible. O

In some sense, the proof of Proposition V.18 is more aesthetically pleasing than
that of Theorem V.8; the definition of A within the transitive model M has a par-

ticularly simple form.

Corollary V.19. For each A C “w, there is a function f : “w — w such that

whenever g : “w — w is any function which satisfies f < g, then A is Aj in g.

Proof. Let X :=“wl“w. Let A C X be such that its intersection with the first “w
is A, and its intersection with the second “w is “w — A. Fix a (canonical) bijection
n between “w and “X. Define f : “w — w to be the function f(x) = fa(n(x)). Now

suppose g satisfies f < g. Let ¢’ : “X — w be the function ¢'(x) = g(n~'(x)). We
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have fo < ¢’. By the proposition above, we see that A’ is IT} in ¢’ (we require the
boldface version of the pointclass because the t € <“X given by the proposition is
coded by a real). By our provision that A’ is the disjoint union of A and “w — A, we
see that in fact A is Al in ¢’. Since the bijection 7 is canonical, we have that A is

Al in g. O

Of course, this corollary also holds for functions from any Polish space to w. We

easily get the following:

Corollary V.20. For each A C “w, there is a function f : “w — w such that

whenever g : “w — w is any function which satisfies f < g, then A € L(*w, A).

Also from Corollary V.19 we get an alternate way to compute the cofinality of the

set of all functions from “w to w ordered pointwise:
Corollary V.21. cf All(w, <) = 22",

Finally, let us remark that the proof of Proposition V.18 has a simple visualiza-
tion when we think of elements of “ X as points in a space rather than paths through
a tree. That is, given A C X, we may think of “X as being partitioned into |X|
blocks of the form [(z)] for z € X. The function f4 assigns 1 to each point in a block
corresponding to an element of A. Now suppose f4 < g. For each block which f as-
signs 1 to each point within, g must assign at least 1 to each point within. However,
assuming ¢ exists in a model which does not contain A, the function ¢ is going to
make a mistake and assign at least 1 to each point in a block [(x¢)] which does not
correspond to an element of A. Indeed, g is overzealous. If we focus on that block,
we may repeat the argument. That is, that block is partitioned into |X| smaller
blocks of the form [(xg, z)] for = € X. The function f, assigns 2 to each smaller

block corresponding to an element of A. Since f4 < g but “g does not know about
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A”, g will be overzealous and assign at least 2 to each point in a block which does

not correspond to an element of A, etc.

5.5 Morphisms Involving Trees and Clouds

Well-founded trees were fundamental for computing cf By(w, <) and clouds were
fundamental for computing cf B, (w, <) for a > 1. In this section, we will complete
the picture by relating the inclusion ordering on well-founded trees to the inclusion
ordering on clouds. We hope to convince the reader that the combinatorics of well-
founded trees and clouds is the heart of the situation, and extra complexity arises
when relating these structures to functions from “w to w. Some of what we say
extends to subsets of <"k, where we have already defined what it means to be a cloud
in this context, and the property that a tree is well-founded tree is replaced with the
property of not having any length x branches. We have faith that the reader can
carry out such generalizations without trouble. However, there is subtlety because
both the property of S C <"k not having any length x branch and the property of
being a cloud are not in general absolute between models of set theory when s > w.

Recall that W is the set of well-founded subtrees of <“w. For the sake of this

section, let us introduce a corresponding notation for clouds:
Definition V.22. C is the collection of subsets of <“w which are clouds.

Given a cloud C € C, recall that Rep(C') : “w — w is a Baire class one function.

Note that for Cy,Csy € C,
C; C Cy = Rep(Cy) < Rep(Cy).

Given a function from “w to w, there is a cloud we may extract from it. Namely, the

set B that we have been using in our arguments in this chapter:
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Definition V.23. Given a function ¢ : “w — w, Cloud(g) € C is defined by
Cloud(g) := {t € ~“w: g(z) > |¢| for all z 3 t}.

The inclusion ordering on clouds reduces to the everywhere domination ordering

of functions from “w to w. That is, we see that given C' € C and ¢ : “w — w,
Rep(C) < g = C C Cloud(g).

That shows that if I' is any pointclass of functions from “w to w which includes
all Baire class one functions, there is a morphism from (I', <) to (C,C). We get a
morphism in the other direction when we restrict to only Baire class one functions
from “w to w. Indeed, by Proposition V.5, each function in B;(w, <) is below one
represented by a cloud. Thus, if ¢_ : By(w) — C is a map which selects such a cloud
and ¢, = Rep, then (¢_, ¢) is a morphism from (C, C) to B;(w, <). Thus, there
are morphisms in both directions between (C, C) and B;(w, <).

As a consequence of Theorem V.8, there is a morphism from B; (w, <) to (P(w), <at).
The reason for Al is because the definition of B within the proof of that theorem in-
volves a real quantifier. The quantification is absorbed into the definition of Cloud(g).

When we restrict attention to (C, C), we see a sharper form of reducibility (we use

Turing reducibility <7 as an example):

Proposition V.24. For each A C w, there is some Cy € C such that whenever

C € C satisfies Cy C C, there exists some t € <“w satisfying
A={new:t"neC}.
Hence, there is a morphism from (C,C) to (P(w), <r).

Proof. Let C4 be the set of all t € <“w satisfying t(|t|—1) € A but (VI' < |t|-1)t(l') &

A. This is precisely the cloud we described at the beginning of Section 5.4 satisfying
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fa = Rep(C4). Now let C' be any cloud satisfying C4 C C. First, note that for all
ne€wneA= 0"ne Cy If the converse holds for all n, then we are done by
defining ¢t := (). Otherwise, we may fix zo € w with xy € A but (x¢) € C. Now, for
alln € w,n € A= (xg)"n € Cy. Again, either the converse implication holds for
all n and we are done, or we may continue by fixing an x; € w satisfying ;1 € A
but (xg,z1) € C. The procedure must eventually terminate, because otherwise we
would have a path which hits C' at infinitely many places, contradicting C' being a

cloud. O
To connect well-founded trees to clouds, we have the following:

Definition V.25. Given C € C, the tree Tree(C) € W is the set of elements of C'

all of whose initial segments are also in C'.

We now see a morphism from (C, C) to (W, C):

C C C
IdT \H \LTree
w - W.

At this point, we have a detailed picture of how well-founded trees and clouds fit into
our investigation. Let I' be any pointclass of functions from “w to w which includes
all Baire class one functions. In the following diagram, an arrow represents the
existence of a morphism, and a double arrow represents the existence of a morphism

in each direction:
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The morphisms between the bottom two relations are given by Propositions 1V.6
and IV.7. This diagram shows that there must exist a morphism from B;(w, <) to
By(w, <), which we should not expect a priori. A similar surprise is a morphism from
(I', <) to By(w, <).

Finally, although we have been discussing clouds which are subsets of <“w, we
could just have well considered clouds which are subsets of <“2. We leave it as an
exercise to the reader to show that there is a morphism in each direction between

these two collections of clouds ordered by inclusion.

5.6 Main Coding Theorems

We change gears slightly from descriptive set theory to combinatorial set theory,
although the core ideas are the same. The arguments we have given, using vertical
and horizontal coding, generalize easily (modulo a few fascinating technicalities) to
handle functions from “ to x for infinite x and A. We insist that the functions have
domain "\ instead of A®, because the transitive model involved needs to understand
the structure of the domain of the functions. An arbitrary transitive model M which
contains the ordinal A" need not think there is a bijection between that ordinal and
("A\)M. We believe that considering functions from *X to k is the fundamental way to
understand the situation. These coding theorems will have significant applications
at the end of the chapter, where we will use them to get new implications between
distributivity laws for complete Boolean algebras.

Throughout this section, for each A C A, let f4 : ®*A — & be the function

0 it (Va < k) z(a) € A,

fa(z) =
a+1 ifz(a) € Aand (VB < a)x(B) € A.
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We may call f4 the horrizontal encoding of A.

Proposition V.26. For each A C X\, whenever M is a transitive model of ZF with

"X € M and some g : "\ — Kk in M satisfies fa < g, then A € M.

Proof. Define the set
B:={t e ~"\:g(x) > Dom(t) for all x J ¢ in M}.
We may argue, just as in Proposition V.18, that there is some ¢t € <"\ satisfying
A={ze€ X :t"z € B}.

That is, we start defining a sequence x = (g, x1,...) such that each z, ¢ A and
x | (o« +1) € B. At limit stages, we take the sequence to be the limit of what we
have constructed so far. If the procedure does not terminate at a stage before s
(to produce the desired t), then we have an x € *\ (which by hypothesis is in M)

satisfying (Va < k) z [ a € B. Hence, (Va < k) g(x) > a, which is impossible. O

For important reasons (the applications to weak distributivity laws for complete
Boolean algebras), we need to weaken the hypothesis that *A € M. We have already
seen one way of doing this, whose statement we repeat now to compare with the

proposition above and those which will follow:

Proposition V.27. For each A C X\, whenever M is a transitive model of ZF with

A€ M and some g : “\ — w in M satisfies
(Vz € (“N)M) fa(z) < g(2),
then A € M.

Proof. This is simply the proof of Proposition V.18 with X = A. O]
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Note that we can replace the hypothesis that A\ € M with the hypothesis that
A = M N Ord and the graph of g is adjoined to M as a predicate. Then if (Vo €
(“N)M) fa(z) < g(x), then A is a definable class within M (using g as a predicate).

The way Proposition V.27 handles the technicality that “A need not be a subset
of M is by using the absoluteness of trees being well-founded. However, this only
applies to the case when k = w, because for k > w it is not absolute between models
of ZFC whether subtrees of <*\ have length x branches. Indeed, if M is a model of
ZFC and T € M is such that (T is a Suslin tree)™ | then if V is a forcing extension of
M by T, there will be a length w; branch through 7" in V' (but of course not in M).
This proves that we need some additional assumption for getting the absoluteness
of the existence of a length w; branch through a subtree of <“*\. One may ask if
there is perhaps a completely different way to prove the analogue of Proposition V.27

where we replace w with w;. Again, Suslin trees tell us the answer is no:

Counterexample V.28. The following is not a theorem of ZFC (for any \): for
each A C wy, there is a function f :“*X — wy such that whenever M 1is a transitive

model of ZFC with X\ € M and <“*X C M, and some g : (“* )M — w, in M satisfies

(Ve € (M) fz) < glo),
then A€ M.

Proof. Let M be a transitive model of ZFC which contains a (pruned) Suslin tree
T C <12, Assume V is a forcing extension of M by T'. Since M and V have the same
ordinals, A € M. It is well-known that Suslin trees are (w, co)-distributive, so all
countable sequences in V' of elements from M are already in M. In particular, <“* A C
M. Now (within M), the forcing is wy-c.c. Hence (within M), by Corollary I1.37 the

forcing is weakly (A“',w;)-distributive. Thus, for each f : “'A — w; there is some
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g: (" NM — wy in M satistying f(z) < g(z) for all z € (“*A\)™. On the other hand,

A & M where A codes the generic path through the tree T'. O

One way to get the desired absoluteness of the existence of length w; branches
through trees of height w; is to assume the tower number t is > w;. Recall that t is

the smallest length of a sequence
(Ay € W] : a < K)

of infinite subsets of w satisfying (Voo < 8 < k) Ay 2* Ap but there is no A € [w]*
satisfying (Vo < k) Ay 2* A (where A C* B means A — B is finite). It is not hard to
see that wy <t < 2¥. See [2] for more on t and related cardinals. The absoluteness
trick in this next proposition is burrowed from Farah in [15], who got the idea from

Dordal in [10], who got the idea from Booth.

Proposition V.29. Assume wy < t. For each A C wy, whenever M is a transitive

model of ZF with w, € M and P(w) C M and some g : (“w)™M — wy in M satisfies
(Vo € (“w)™) fa(z) < g(2),

then A € M.

Proof. Note that P(w) € M implies <“'w; C M, but we will use the assumption
P(w) C M for an additional purpose. Define B C <“'w; just as in Proposition V.26.
Assume, towards a contradiction, that A ¢ M. As we argued in Proposition V.26,
there is an x € “*wy (in V) satisfying (Vo < wi)z [ @ € B. It is important that
<1, C M, because otherwise we might get stuck at some stage strictly before w;.
We claim that in fact x € M. Once we show this, we will have our contradiction.
To prove the claim, let F' : <“'w; — [w]¥ be a function in M such that for all

t1,t9 € <“twy, the following hold:
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2) t1 Lty = F(tl) N F(tz) is finite.

Such functions are easy to construct by induction: at successor steps, take an element
of [w]¥ and form a size w; family of almost disjoint infinite subsets of it. At limit
steps, take pseudointersections. Since in V' we have w; < t, there is some S € |w]*
satisfying

(Vo <wy)SC" F(x | a).

Since P(w) C M, in particular S € M. Now x can be defined in M by
T = U{t € ““w : SCHF(t)}.

Thus, x € M, and we are done. O

We could have proved this proposition using vertical instead of horizontal coding
to get the function f to have domain “'2. At this point, it appears that horizontal
coding is strictly better than vertical coding. This next proposition shows that
the methods are in fact incomparable, because the tree <2 is not wide enough for
horizontal coding to work. Recall that an infinite cardinal is weakly compact iff it
is strongly inaccessible and has the tree property. The function Exit([[a]]) has the

expected definition.

Proposition V.30. Fiz a € *2. Fiz M a transitive model of ZFC such that k € M,

<2 C M, (k is weakly compact)™, and some fized g : ("2)M — k in M satisfies
(Vz € ("2)") Exit([[a]])(z) < g(),

then a € M.
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Proof. As usual define B C <*2 by
B={te~"2:g(zx) > Dom(t) for all x J ¢ in M}.

Let T C B be the set of elements of B all of whose initial segments are also in B.
Assume towards a contradiction that a ¢ M. As usual, we can argue that T has a
length x branch (in V). Once we show 7" has a length x branch in M, we will be
done.

Since (x is strongly inaccessible)™ | we have (each level of T has size < ). Since

T has height & in V, (T has height x)*. Combining these last two facts with the

fact that (x has the tree property)™, we get that T has a length x branch in M. O

We insisted that M be a model of ZFC so that we could simply state the hypothesis
on k in M. Since w is weakly compact, this argument gives us an alternate way to
handle that absoluteness portion of the proof of Theorem V.8! Note that removing
the hypothesis <*2 C M in the proposition above would be a disaster: we are building
a path in V and we need to be sure that each proper initial segment of this path is
within M (because only then is hypothesis that a ¢ M useful)! Finally, it would be
immoral to not mention the brute force way to get the absoluteness of the existence of
length x paths through subtrees of <*X: elementary substructures. This is different
from our previous propositions because the model in question need not be transitive
(and so it does not have an application to distributivity laws for complete Boolean

algebras).

Proposition V.31. For each A C X, whenever (M, €) <V with {k, \} U <"\ C M

and some g : "\ — Kk in M satisfies
(Vo € "A) fa(z) < g(z),

then A € M.
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The reader may easily fill in the details. Notice the hypothesis that g every-
where dominates f4, instead of merely satisfying (Vo € (*A\)M) fa(z) < g(x). The
punch line of the proof is that elementarity allows us to conclude that from the exis-

tence of the length x path we build in V', there must be a similar length x path in M.

5.7 Definitions from Prewellorderings

In Section 5.6, we stated the coding results in terms of functions from “\ to k.
When instead looking at functions from A" to k, we get analogous coding results at
the expense of throwing in an appropriate surjection. We will give a couple examples

in the case of encoding subsets of w and encoding subsets of “w.

Proposition V.32. Let A\ be a cardinal and h : X — “w be a surjection. Then
there is a function F : P(w) — *w definable from h such that for each A C w and
g:A—w,

F(A) < g= A is definable from g and h.

Proof. For each A C w, let f4 : “w — w be the horizontal encoding function from

Section 5.6. Let I : P(w) — *w be the function

F(A)(@) := fa(h(a)).

Now fix A Cw and g : A — w satisfying F'(A) < g. As usual, way may argue that

there is some t € <“w satisfying
A={zew: Ma<Nh(a) | (t|+1)=t"2z= g(z) > |t| + 1},
and we are done. O

Since the constructible universe L satisfies CH and has a definable well-ordering

of “w, we have the following:
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Corollary V.33. (V = L) There is a definable function F : P(w) — “‘w such that

for each A Cw and g : wi — w,
F(A) < g= A is definable from g.

For the next higher type we have the following, whose proof we omit:

Proposition V.34. Let \ be a cardinal and h : X — “w be a surjection. Then there
is a function F : P(“w) — *w definable from h such that for each A C “w and
g:A—w,

F(A) < g = A is definable from g, h, and a real.

5.8 Complete Boolean Algebras

We will now apply the coding results of Section 5.6 to obtain implications between
distributivity laws for complete Boolean algebras. Throughout this section, let B be

a complete Boolean algebra. We have the following:
Theorem V.35 (A). Let A be an infinite cardinal. If
1) B is weakly (N, w)-distributive,
then B is (A, 2)-distributive.
Theorem V.36 (B). Let x be a weakly compact cardinal. If
1) B is weakly (2, k)-distributive and
2) B is (o, 2)-distributive for each o < k,

then B is (k, 2)-distributive.
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Theorem V.37 (C). If
1) B is weakly (2“*, wy)-distributive,
2) B is (w, 2)-distributive, and
3) 1k (wy < t),
then B is (w1, 2)-distributive.

Theorem A follows from Proposition V.27, Theorem B follows from Proposi-
tion V.30, and Theorem C follows from Proposition V.29. We give the argument
for Theorem A, as the other two are quite similar. The point is the following easy in-
termediate lemma, whose order of quantifiers is not as powerful as Proposition V.27,

but the functions have the ordinal (A*)* instead of the set (“A\) as their domains:

Lemma V.38. Let M be a transitive model of ZF such that the ordinal X is in M and
(“MN)M can be well-ordered in M. Assume P(\) — M # (. Then there is a function

f:(O)M — w which cannot be everywhere dominated by any g : (\)M — w in M.

Proof. Use Proposition V.27 with any A € P(\) — M to get an f : “A — w such that

there is no g : (*A\)™ — w in M satisfying
(Ve € (“NM) f(z) < ().
Since (“A)M can be well-ordered in M, fix a bijection
me )M S (42
in M. Define f: (\)™ — w by

(@) = f(n(a)).
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That is, the following diagram commutes:

(A=),
Let g : (\“)™ — w be an arbitrary function in M. Suppose, towards a contradiction,
that

(Vo < (A)M) f(a) < g(a).

This implies that if we define §: (“A\)™ — w by

we have that g € M, and

This is a contradiction. O

We now get Theorem A. Let us show the contrapositive. Let u = A*. Suppose
B is not (A, 2)-distributive. Force with B. The extension has a new subset of A\. By
the lemma above (using M for the ground model and V for the extension), there is
a function from p to w in the extension which cannot be everywhere dominated by
any function in the ground model. Hence, B is not weakly (u, 2)-distributive.

With regard to Theorem C, we may ask if it is consistent with ZFC that every com-
plete Boolean algebra that is both (w, co)-distributive and weakly (A, w;)-distributive
for all A must also be (wy,2)-distributive. We hope that this follows from MA or
a similar axiom. Indeed, a model where this fails would appear to be pathological
given the coding results we have seen. By Theorem C, we need only worry about
those B satisfying 1 IFp (w; = t). The final result of this chapter will, together with

Theorem C, suggest that MA(w;) does imply this.
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The main idea of this next proposition is the following: if we have a size A collec-
tion C of antichains in B each of size x/, then if B is weakly (A, x')-distributive, then
there is a maximal antichain A C B such that below each a € A, each antichain in C
has < k' non-zero elements. Assuming also that B is (w, |B|)-distributive, we can re-
peatedly apply this construction countably many times until we produce a maximal
antichain B, such that below each V' € B,,, each antichain of B has only countably
many non-zero elements. That is, B,, will witness that B is “locally c.c.c.”. Then,
we will use a result of Baumgartner to conclude that since B is locally c.c.c. and
(w, 2)-distributive, B is either (wy, 2)-distributive or a Suslin tree can be embedded
into B. If we assume there are no Suslin trees (which follows from MA(w)), we
get that B must be (wy,2)-distributive. Given a complete Boolean algebra B and

a,b € B, we say a is non-zero below b iff a A b # Og.

Proposition V.39. Assume there are no Suslin trees. Let B be a complete Boolean

algebra and Kk be a cardinal satisfying the following:

1) B is (w, 00)-distributive;

2) B is k-c.c.;

3) k< Ny, ;

4) B is weakly (|B|*', &')-distributive for each uncountable k' < k.
Then B is (w1, 2)-distributive.
Proof. We will construct a sequence of maximal antichains

(B, CB:ncw)

such that By := {1} and (Vn < m < w) B,, refines B,,. Each B, will have the

property that for any maximal antichain A below an element b € B,, for each
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b € B, extending b, A will have < |A| non-zero elements below &'. We will then
define the maximal antichain B,, to refine each B,, and we will argue that below
each b, € B, B is c.c.c.

Let k < N, be the least cardinal such that B is k-c.c. Define By := {1g}. We will
now define a maximal antichain By C B (which trivially refines By). Every antichain
in B has size < x. Consider an uncountable cardinal x = R, < x. Let A := [B|*".
Let (Az : B < A) be an enumeration of the maximal antichains in B of size x’. For
cach B < A, let (ag : 7 < ') be an enumeration of the elements of Ag. Let G be

the canonical name for the generic filter. Fix a name f such that 1IF f: A — & and
LI- (V8 < A)ag js € G-

By hypothesis, B is weakly (A, ')-distributive, so there is a maximal antichain Cy,, C
B (which trivially refines By) and for each ¢ € Cy, a function g.: A — &’ such that

¢k f < g.. Hence, for each ¢ € Co.a;

el (VB < N (Vy < &)y > §.(8) = ag, € G.

This implies that for each Ag, below each ¢ € Cy , there are < |As| non-zero elements
of Ag.

For each R, < k, we have such a maximal antichain Cy, C B. Since k < N,
the family (Cy, € B : X, < k) is countable. Since B is (w, co)-distributive, we may
fix a single maximal antichain B; C B which refines every Cy,. Note that B; has
the property that for each maximal antichain A C B (below 1p) and ¥ € By, A has
< |A] non-zero elements below b'.

We will now define B,. Consider an uncountable cardinal " = N, < k. Let
A= |B|*. Let (45 : B < \) be an enumeration of all size ' antichains that are each a

partition of some element of B;. Since B is weakly (), ’)-distributive, we may use an
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argument similar to before to produce a maximal antichain C , which refines B; such
that for each Ag has < |Ag| non-zero elements below each ¢ € C ,. This completes
the construction of C ,. Like before, we may use the (w, co)-distributivity of B to get
a common refinement By of every maximal antichain in the family (Ci, : R, < k).
Note that By has the property that for each partition A of some element of B; and
b € By, A has < |A| non-zero elements below b'.

We may continue this procedure to get a sequence (B, : n € w) of maximal
antichains of B. The following diagram depicts the maximal antichains which we

have constructed, where an arrow represents refinement:

By \\
CO,I 00,2 0073 ...

Using the (w, co)-distributivity of B once more, we may get a single maximal an-
tichain B, C B which refines each B,,. We will now argue that given any maximal
antichain A C B and b, € B, A has only countably many non-zero elements below
b.

Fix an arbitrary maximal antichain Ay C B. Fix b, € B,. Let ko := |Ag|. If
ko < w, we are done. If not, let b; be the unique element of B; above b,. By the
construction of B, Ay has < k¢ non-zero elements below b;. Let k1 < kg be the

number of such non-zero elements. That is, letting

A1 = {CL/\bliCLEAo},
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we have |A;| = k1 < Ko. If K1 < w, we are done because |[{a A b, : a € Ag}| < |A;] <
w. Otherwise, let by, be the unique element of By above b,. By the construction of
B>, A; has < k; non-zero elements below by. Let ko < k1 be the number of such

non-zero elements. That is, letting
A2 = {a/\bg ac Al},

we have |As| = ko < k1. If Ky < w, we are done by similar reasons as before. If
not, then we may continue the procedure. However, the procedure will eventually
terminate. This is because if not, then we would have an infinite decreasing sequence
of cardinals

Ko > K1 > Ko > ...,

which is impossible. Thus, Ay has only countably many non-zero elements below b,,.

At this point, we have argued that below the maximal antichain B,, B has the
c.c.c. Now, it must be that B is (wy, 2)-distributive. Let us explain. It suffices to
show that B is (wy, 2)-distributive below each element of B,,. Fix any b, € B,,. Below
by, B is c.c.c. and (w, 2)-distributive. Suppose, towards a contradiction, that B is
not (wy, 2)-distributive. Quoting a result of Baumgartner !, there exists a Suslin tree
which, when turned upside down, can be embedded into B below b,,. However, we

assumed there are no Suslin trees. This completes the proof. O

1This was discovered independently by Andreas Blass who was told it was already proved by James Baumgartner.
However, neither the author nor Blass have been able to find a proof in the literature.



CHAPTER VI

Impossibility of Coding for Pointwise Eventual Domination

The purpose of this chapter is to discuss obstructions to computing the cofinality
of B,(“w,<*) for @ > 1. It will become clear that the methods of the previous
chapter do not suffice. Within the next chapter we will successfully perform the
computation by proving a strong infinite coding theorem.

In the first section, we observe that it is consistent with ZFC that cf All(*w, <*) <
22°. This tells us that a ZFC proof that cf B,(“w,<*) = 2% for a > 1 must be
substantially different from our proof that cf B, (w, <) = 2¢, because the latter proof
generalized easily (Corollary V.21) to show that cfAll(w, <) = 2*". We have an
impossibility of coding result, in the sense that ZFC cannot prove the following: for
each A C “w, Alice can produce a function f : “w — “w such that if g : “w — “w
pointwise eventually dominates f, then Bob can guess A from ¢ using only continuum
many guesses.

In the second section, we show that the simplest (in some sense) encoding scheme
(which we call “Naive Vertical Coding”) to try to show cf B, (Yw, <*) = 2 (for a > 1)
is doomed to fail. Specifically, if for each A C w we assign a function f : “w — “w

with the property that
(Vk € w)(Ja € “w) f(x)(k) = Exit([[a])(2),

123
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then A need not be constructible from any code for a Borel function g satisfying
f <* g. Hence, A need not be Al in a Borel code for such a g. This is convincing
evidence that such an encoding scheme cannot work, because a countable set of
guesses for A from (a code ¢ for) the Borel function g is likely to be a subset of
P(w) N L[c]. The reason for us considering “constructible from” is because we will
use forcing to get our counterexample: the generic real A will not be constructible
from any real in the ground model, and yet the function f associated to A will be
pointwise eventually dominated by a Borel function with a code in the ground model.

In the third section, we will show that an infinite coding theorem to prove
cf By (Yw, <*) = 2¢ (for « > 1) must be specific to Borel functions, and cannot (in
ZFC) generalize to projective functions. This is because of the consistent existence
of a projective well-ordering of “w together with wy < b. In the final section, we show
what can go wrong when considering relations significantly weaker than pointwise

eventual domination.

6.1 Considering All Functions

The point of this section is to investigate the poset All(“w, <*) of all functions
from “w to “w ordered by pointwise eventual domination. We will show that it is
qualitatively different than the poset All(w, <) of all functions from “w to w ordered
pointwise. The slogan is as follows: arbitrary subsets of “w can be encoded into
elements of All(w, <), but cannot (in ZFC) be encoded into elements of All(¥w, <*).

For the rest of this section, we will use the symbol ¢ to denote 2. Let <gjep.)
be the binary relation defined by A <g.fwy) B iff A is definable in the language of

set theory by a formula using only B and real numbers as parameters. ! Note that

1Technically, <def(ww) is not definable by Tarski’s undefinability of truth, but by restricting quantifiers to a
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for each B C “w, the set {A C “w : A <gepw) B} has size 2¥. By the results in
the previous chapter, there is a morphism from All(w, <) to (P(“w), <gef(ww)). This
implies

of All(w, <) = 2.

On the other hand, we will soon show that there can be no ZFC proof that there is a
morphism from All(*w, <*) to (P(“w), <gefww)). We will prove this by constructing
a model of ZFC in which

cf All(*w, <*) < 2°.

The idea is to build a model in which simultaneously there is a scale in (Yw, <*) of

length ¢ and cf (‘¢, <*) < 2°.

Observation VI.1. Let (¢_, ¢, ) be a morphism from a poset P to a poset Q. Let A
be an infinite cardinal. Let ' be the poset of functions from X to P ordered pointwise.

Let Q' be defined similarly. Then there is a morphism (¢, ¢.) from P to Q'
Proof. Define ¢’ : *Q — *P and ¢/, : *P — *Q as follows:
¢ (9) ==z ¢_(g(x))
¢ (f) =3 = ¢4 (f(2)).
The pair (¢, ¢,) is as desired. O
Combining this with Observations 1.9 and 1.10, we get the following corollaries.

Corollary VI.2. If there is an unbounded chain in (“w,<*) of length a regular

cardinal Kk, then in addition to kK < 0 we have

cf (‘k, <) < cfAll(Yw, <¥).

sufficiently large initial segment of V' we can avoid this problem.
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Corollary VI.3. If there is a scale in (“w, <*) of length r (which must be a reqular

cardinal), then in addition to k = b =0 we have
cf (‘k, <) = cf All(*w, <¥).
Of course, there is an unbounded chain in (Yw, <*) of length b, so we have
(6.1) cf (b, <) < cf All(*w, <*).

Let x be a regular cardinal. Proposition II.1 shows that cf (*x, <) > ¢*. Hence, 2° =
¢™ (and therefore GCH) implies cf (‘k, <) = 2°. The following is a more interesting

implication:
Corollary VI.4. If2° = ¢, then cf All(*w, <*) = 2°.

Proof. Let A = ¢ and k = b. We have \* = (2¢)° = 2" = ¢ = \, so by Corollary 11.27,

cf (b, <) = 2°. The result follows by the inequality (6.1). O

Of course, 2° = ¢ implies b < ¢. There are three cases:

1) 2 =g
2) b=yg
3) b<c< 28

The corollary above handles the first case. The second case implies b = 0 = ¢, which
in turn implies there is a scale in (“w, <*) of length ¢. This, by Corollary VI.3,
reduces the problem to studying the poset (‘c, <) (and in this case ¢ is regular). In

particular,
(6.2) b=cand cf (¢, <) < 2° = cfAll(*w, <¥) < 2°

We will now build a model of ZFC satistying the left-hand side of (6.2).
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Recall Theorem I1.10 (due to Cummings and Shelah), which gives us that if A is

A</\

a regular cardinal satisfying = X and Q is a poset in which every size A subset

is bounded, then there is a A-closed (meaning closed under sequences of length < \)
and AT-c.c. forcing D(\, Q) such that 1 I (cf (*X, <) = §) where § = f Q.

Suppose we start with a ground model satisfying b = ¢, ¢<° = ¢, and ¢ < 2°.
Let A :=cand Q := (A", <). When we force with D(), Q), in the extension we will
have cf (‘c, <) = AT < 2°. We will also have b = ¢, but this relies on the fact that
the forcing is A-closed. Indeed, simply not adding reals and not collapsing cardinals
does not suffice to preserve b = ¢, as is shown in [36]. To get simultaneously ¢<° = ¢
and ¢t < 2° the tower number t is useful.

Recall that t is the minimum length of an unbounded chain in ([w]“, 2*). A useful
fact about t is 2<' = ¢ (see [2] for a proof). This implies ¢<' = ¢. Also, t is regular
and t < b. We will need the following simple observation (which can be made much

more general but there is no need here):

Observation VI.5. If P is a forcing that is c-closed and t = ¢, then 11- (t = ¢).

Proof. Let A = ¢. Since P is c-closed, it does not add reals, so 1 IF (jw]¥ = ch]\‘“)
Additionally since P is ¢-closed, cardinals < A are preserved, so 1 IF (¢ = 5\). Suppose,
towards a contradiction, that 1 I (t = ¢). There must be p € P and a name 7
satisfying p IF (7 is an unbounded chain in ([w]*, D*) of length < X). This is a

contradiction, because P does not add sequences of length < ¢ whose elements are in

the ground model. O]

We now have all the pieces for the promised consistency result. Recall from [33]
that Fn(7, J, \) is the poset of partial functions from I to J of size < A ordered by

extension. By Lemma 6.10 of [33], the forcing Fn(I, J, \) has the (|J]<*)"-c.c. When
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J =2and |I| > X, Fn(I, J,\) is the forcing to add |I| Cohen subsets of A. In this

case, it is also called Add(A, |1]).

Proposition VI.6. There is a forcing extension in which b = ¢ and cf (¢, <) < 2°,
so therefore

cf All(*w, <¥) < 2°.
Proof. By (6.1), it suffices to force both b = ¢ and cf (°c, <) < 2°. Without loss of
generality, assume t = ¢ holds in M; := V (we can always force Martin’s Axiom,
which implies this). Since t is regular, so is ¢. We will first construct a forcing

extension M, of M, which satisfies the following:
1) t=rc;
2) ¢ is regular;
3) ¢~ =¢;
1) ¢t < 2.
Notice that 1) implies 2) and 3). Let M, be a forcing extension of M; obtained

by adding ¢*t Cohen subsets of ¢. That is, the forcing P which consists of partial

functions from ¢ x ¢** to {0, 1} of size < ¢ (ordered by end-extension):
P=Fn(cxct™, 2 0).

Since this forcing is ¢-closed and t = ¢, by Observation V1.5 we have that M, satisfies
1). Also, by the nature of this forcing, M, satisfies 4). Hence, My satisfies 1) through
4). Since 2<° = ¢ (because t = ¢), P has the ¢*-c.c., so cardinals > ¢ as preserved.
Since P is c-closed, cardinals < ¢ are preserved as well.

Let A := ¢ =cand § := (\T)M2 = AT, By 1) through 4), we have (t = \)M2 (A

is regular)M2 (A\<* = 2M)M2 and (AT < 2M)M2. Within M, define Q := (AT, <). Of
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course,

(b(Q) = cfQ = < 2})™2,

Within M, consider D(\, Q). Let M3 be a forcing extension of My by D(A, Q). Since

(D(\, Q) is A-closed)2, ¢Ms = . By 4) of Theorem II.10,
(cf (N, <) = )™
Since (D(\, Q) is A-closed and AT-c.c.)™2 we have (2*)M2 = (2)Ms which implies
(6 < 2M)Ms,
Thus,
(cf (¢, <) < 29)Ms,

Since (D()\, Q) is c-closed)™2 and (t = ¢)2, by Observation VI.5 we have (t =
)3 and so

(b = ¢)™s,
This completes the proof. O]

What remains at this point is to investigate the situation when b < ¢ < 2°. We
will content ourselves by showing cf All(“w, <*) = 2¢ in the natural model one would
construct in which b < ¢ < 2°. The reader may skip the rest of this section with
no loss of continuity. The following lemma (which can be made much more general)
deals with the main technicality. The argument is essentially the same as the one

which shows that Fn(k,w,w) forces d = k.

Lemma VI.7. Let P := Fn(w; X w3, wi,wi). Assume P has the ws-c.c. Let G be the

canonical name for the generic, so 1 IF (G twy X w3 —wp). Letp €Pand € VE
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satisfy p IF (7 : wy X we — wy). Then there is some v < ws such that p I+ (no column

of T can everywhere dominate the y-th column of G) That is,

plE (V6 < wy)(Fax < wy) Gla, %) > 7(av, ).

Proof. First, note that P does not collapse any cardinals. Without loss of generality,

7 is a nice name. That is,
7= U{{((a,ﬁ),v)} X Aapo:a <wy,f <wy,v<w},

where each A, g, is an antichain in IP. Since [P has the ws-c.c., each A, 3, has size

< wy. Thus, we may fix some v < w3 satisfying
(Va < w) (VB < wa) (Vv < wq)(Vf € Aapn) Dom(f) C wy x 7.

That is, all of the domains of the functions in all antichains involved with the nice
name 7 are to the left of the y-th column of w; x ws. Informally, this implies that
when we pass to a condition stronger than p to control the behavior of 7 in the
extension, we can do so without imposing any additional requirements on the ~-th
column of G.

We claim that p IF (no column of 7 can everywhere dominate the §-th column
of G) Suppose, towards a contradiction, that this is false. Let p; < p and § < w»
satisfy p; IF (the S-th column of 7 everywhere dominates the 4-th column of G)
That is,

- (Va < w) G(a,5) < 7(a, B).

Fix a < wy such that (a,v) ¢ Dom(p;). Now, strengthen p; to a condition py so

that p, decides 7(c, ) to be some fixed value v < w; and

Dom(p1) N (w1 x (w3 — 7)) = Dom(pz) N (w1 X (w3 — 7).
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That is, every element of Dom(p,) —Dom(p,) is strictly to the left of the y-th column
of wy X ws.
Finally, let
p3 = p2 U {((Oé,ﬁ),’l] + 1)}
Hence, ps < p; and ps IF G(d&, B) = © + 1. We now have a contradiction, because
pslF 0+ 1=G(a,9) < 7(a0) =10,
which is impossible. O]

We can now prove the following. The proof is routine, but we include all the

details to be careful.

Proposition VI.8. There is a forcing extension in which
b<c<?2

and

cf All(*w, <*) = 2°.

Proof. Let P := Fn(w; X ws,wy,w;). Without loss of generality, assume GCH (we
can get this by forcing). Because of GCH, we have |P| = w3, P has the ws-c.c. and
ws? = ws. Let M; := V. Note that P does not add reals or collapse cardinals. Let

M be a forcing extension of M; by P. By the nature of P,
(291 = ws) M2,

Also,

<2w2 —_ UJ3)M2

(because there are (w3?)“? = w3 P-nice names for subsets of wy). Let Q € M; be such

that (Q is the forcing to add wy Cohen reals)™2. Let M3 be a forcing extension of M,
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by Q. M; will be our desired model. Note that (Q does not collapse cardinals)2.
Also, (|Q| = wy and Q has the w;-c.c.)2, which implies (the number of Q-nice names

for subsets of w; is at most |1 (“wy)| = wo®t < wy? = 242 = w3)M3 50
(291 = ws)Ms.

By a similar argument,
(292 = wg3)Ms.

Since P does not add any reals, (b = w;)2. Since (Q is the forcing to add wy

Cohen reals)™2 | also

(b = )M

and

(¢ = wy)Ms.

Thus, we have

(wi =b<ec< 2%,

By the above lemma applied in M; to P, we have (cf (*'w;, <) = w3)™2. Hence,
(cf (*2w1, <) = w3)™2. Applying Corollary 11.38 in M, using A = w, and k = wy, we

have

(cf (2w, <) = wg)M3.

Since (there is an unbounded chain in (“w, <*) of length b = w;)™* and (wy = ¢)*s,

we may apply Corollary VI.2 to get
(cf (2w, <) < of All(*w, <*))Ms,
Thus, we have shown

(ws = cf (2w, <) < cf All(Yw, <) < 2° = 292 = (yg)Ms,
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and so

(cf All(*w, <*) = 2)Ms,
so we are done. O

If we want to modify the above argument to get a model in which b < ¢ < 2° and
yet cf All(¥w, <*) < 2¢, we would need to gently add subsets of w;. Adding Cohen
subsets of wy is somewhat violent. There seems to be no analogue of random reals for
subsets of wy, and adding Sacks subsets of w; is not as gentle as one might expect.

The proofs in this section yield much more general results, which we will state
now without proof. In all these propositions, let P = (P, <p) be a poset, A be an
infinite cardinal, x < X be a regular cardinal, and P’ = (* P, <xp) be the poset of all
functions from A to P ordered pointwise by <p. In this section, we investigated the

situation where (P, <p) = (“w,<*) and A = c.

Proposition VI.9. If there is an unbounded chain in (P,<p) of length k, then in

addition to k < cf (P, <p) we have
cf Pk, <) < cfP.

Proposition VI.10. If there is a scale in (P,<p) of length k, then in addition to

k=b(P,<p)=cf(P,<p) we have
of (*k, <) = cf P,

Proposition VI.11. Let k = b (P, <p) (so k is reqular). Assume |P| < 2* (so that

AP| =2%). If \* = \, then cf P’ = 27

Assume now that A = ¢ and that both P and <p are Borel (so we may talk about

(P, <p)™ in any transitive model M of ZFC).
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Proposition VI1.12. If it is provable in ZFC that t < b (P, <p) and cf (P, <p) <,

then there is a forcing extension in which t = ¢ and cf P’ < 2°.

Proposition VI.8 is a bit too delicate to generalize in an easy to state way. Here is
the natural way to generalize the proof: first, start with a model in which b (P, <p)
is equal to the cardinal x. Next, add Cohen subsets of xk to make 2% at least k™.
Finally, add real numbers by a s-c.c. forcing in a way to keep k = b (P, <p) in the

extension while making ¢ strictly between x and 2.

6.2 Impossibility of Naive Vertical Coding

In this section we will use Sacks forcing, so the reader may want to quickly read
Section C for terminology and the basic lemmas. Let us quickly review some defini-

tions. Given a tree T' C ““w, Exit(7") : “w — w is the function

0 if x € [T7,
Exit(T)(x) :=

min{l:x [l ¢ T} otherwise.

Given 2’ € “w, [[2']] € ““w is the set
[2]] :=4{2" | 1:] € w}.

Hence,
0 if v =a,
. /
Exit([[2']]) (=) =
min{l: z(l —1) #2'(l — 1)} otherwise.
That is, Exit([[z']])(x) is the level at which x deviates from z’.
The prototypical result of the last chapter is that if M is a transitive model of

ZFC and 2’ € “w — M, then there is no g : (“w)™ — w in M satisfying

(Vz € (“w)™) Exit([[]]) (z) < g(=).
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Recall that we dubbed this encoding 2’ — Exit([[2"]]) vertical coding. One might
hope this same trick can be recycled to handle functions from “w to “w. We will

explain.

Definition VI.13. Given a function f : “w — “w and n € w, the function

z = f(z)(n)
from “w to w is the n-th slice of f.

Definition VI.14. Given a sequence X = (z, € “w : n € w), fr : “w — “w is the

function whose n-th slice is Exit([[z,]]). That is,

fa(w)(n) == Exit([[z,]]) ().

Suppose M is a transitive model of ZFC and X = (x,, € “w : n € w) is a sequence
such that no x, is in M. Now, consider an arbitrary ¢ : (“w)™ — “w in M. Our

hope is that by a suitable choice of X', g cannot satisfy
(6.3) (V2 € (“w)™) fa(z) < g(a).
For each n € w, since x,, & M, the set
X = {z € (“w)" : g(x)(n) < falz)(n)}
is non-empty. We see that (6.3) is equivalent to
(Vz € (“w)){n €w:z € X,} is finite.

Thus, our hope is for infinitely many X,, to contain a common point. Unfortunately,
we cannot ensure this (in ZFC) no matter how cleverly we choose the sequence X'.

Specifically, if V' is a Sacks forcing extension of M, then for any sequence X, there
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is a function g : (“w) — “w in M which satisfies (6.3); this is why we call the
encoding scheme naive vertical coding. In fact, the function g can be chosen to be
Borel with a code in M, and letting g : “w — “w be the function in V' coded by the
same Borel code,

(Vo € “w) fa(z) <7 g().

Establishing this fact is the point of this section. The proof is complicated, so we
will warm up with a sequence of easier results which systematically introduce the
relevant ideas.

For the rest of this section, let M denote a transitive model of ZFC. First, note
that if the sequence

X =(r, €“w:necw)

is in M, then fy | M € M, and (6.3) holds when we set g := fy | M. Even if

(Vn € w)x, € M, it does not follow that X € M. Also, it might be the case that
{new:z, e M}

is not in M. Despite these last two facts, the situation the reader should imagine is
when (Vn € w)z,, € M (which of course implies X' ¢ M). Later, we shall see that

the situation becomes further complicated when

{<n1’ n2> O xm}

is not in M.
Note that if all the z,’s are the same, then (6.3) is satisfied by the function
g(x) == (n — n), because (Vzr € “w) f(x) : w — w is a constant function. This

phenomenon can occur even if we require the z,, to all be distinct from one another:
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Proposition VI.15. Suppose V' is “w-bounding over M. Let X' be the set of limit
points of elements of the sequence X = (x, :n € w). If X' is countable, then there

is some y € (“w)™ satisfying
(Vo € “w) fa(z) <" .

Proof. Assuming X' is countable, there is some y € “w that eventually dominates
each element of
{fx(z) 2z € X'}
Since V is “w-bounding over M, fix some y € (“w)M that eventually dominates both
y' and the identity function n — n.
Consider any = € “w. If z & X', then there is some neighborhood of  containing
only finitely many elements of X', so fx(x) is bounded by the definition of fy, so of

course fy(x) <*y. On the other hand, if x € X', then

falx) <y <My
by construction. O

If the set X’ in the proposition above is uncountable, then by applying the Cantor-
Bendixson Theorem to the closed set X', we see that |X'| = 2¢. Indeed, without
loss of generality we may assume that the points in X are dense in “w; it does not
hurt to add all rational numbers to the sequence X'. When we make this assumption,

Im(fx) is unbounded:

Proposition VI.16. Suppose the set X' of limit points of elements of the sequence
X = (x, :n € w) is dense in “w. Then Im(fy) is unbounded. That is, there is no

y € “w (let alone y € (“w)M ) satisfying

(Vo € “w) fx(x) <" .
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Proof. Consider any y € “w. We will construct an = € “w satisfying fr(z) £* .
That is, an x satisfying
(F*n € w) fx(x)(n) > y(n).

To build this z, first let ng = 0. Let ty € <“w be be a node that is not an initial
segment of x,,,, but ¢y deviates from z,, after level y(ny). Next, let n; > ngy be such
that to s an initial segment of x,,,. Such an n; exists because {x, : n € w} is dense
and [to] is an open set. Let ¢; € <“w be an extension of ; that is not an initial
segment of x,,, but which deviates from z,, after level y(n;). Continuing like this,

we get a sequence

tCH Tt ...

Let x := ., ti- By construction, fx(z)(n;) > y(n;) for alli € w. Hence, fx(z)(n) >

1EW

y(n) for infinitely many n. O

The fact that Im(fx) can be unbounded makes it even more shocking that fx is
pointwise eventually dominated by some g € M when V' is a Sacks forcing extension
of M.

The next proposition illustrates a key idea we will later enhance. For simplicity,

the reader may want to first consider the case that the z,,’s are distinct.
Proposition VI.17. Let X = (z, : n € w). Suppose
T={T,:new)eM
is a sequence of subtrees of <“w satisfying the following:
1) (Vn e w)x, € [T,].
2) (Yni,ng € w) one of the following holds:

a) Tp, = Ty,
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b) [T.,] N [T,,] = 0.
Then there is a Borel function g : “w — “w that has a Borel code in M satisfying
(Vz € “w) fa(z) <7 g(x).
Proof. Let g : “w — “w be defined by
g(x)(n) := max{Exit(T,)(z),n}.

Certainly ¢ is Borel, with a code in M (because 7 € M). The “Exit(7},)(z)” part of

the definition is doing most of the work. Specifically, for any n € w and = & [T,,],

fa(w)(n) = Exit({[z,]])(x) < Exit(T,)(2).

This is because since z,, is a path through the tree T,,, x ¢ [T,,] implies the level

where x exits T,, is not before the level where x differs from z,,. Thus, we have

(Vn € w)z & [Tn] = fx(x)(n) < g(z)(n).

*

Suppose, towards a contradiction, that there is some = € “w satisfying fy(x) £

g(x). Fix such an z. Let A be the infinite set

A:={necw: fx(x)(n) > g(x)(n)}.

It must be that x € [T,] for each n € A. By hypothesis, this implies z,, = z,,
for all ny,ny € A. Thus, fx(x)(n) is the same constant for all n € A. This is a

contradiction, because g(z)(n) > n for all n. O

In the proposition above, we may think that the sequence 7 witnesses that distinct
elements of X are indeed distinct. Said another way, 7 is a tool to separate the x,,’s.

Unfortunately, if

{<n1’n2> P py = xnz} € M7
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then there can be no such 7 € M. Hence, we must enhance the proposition to make
further progress.

The next definition is a more complicated analogue of the sequence 7 designed
to witness the separation of the elements of X from one another. When a separation
device D for X exists in a transitive model of ZFC, that model can produce a Borel
function ¢ : “w — “w which pointwise eventually dominates fy. However, unlike the
case for sequences T satisfying the hypotheses of the proposition above, it is always
the case that M contains a separation device for X when V is a forcing extension
of M by the forcing to add a single Sacks real. This definition was extracted from
a longer forcing argument. We present the shorter proof that a separation device
exists in the ground model.

In this definition, we fix a canonical bijection n : w — [w]? so that for each
n € w, we may talk about the n-th pair n(72) € [w]?>. That idea is that for each
{n1,n2} = n(n) € [w]? the functions Fy,, and Fj ,,, together with the finite sets
I(ny) and I(ng), separate x,, and x,, as much as possible. For n € n(n), the function
Fipn "2 — P(<“w) is shrink-wrapping 2" possibilities for the value of z,,. We need
to make sure that what contains one possibility for z,, is sufficiently disjoint from
what contains another possibility for z,,,, even if it is not possible that simultaneously

both z,, and z,, are in the respective containers.

Definition VI.18. A separation device D for X = (z,, : n € w) is a pair (F, I) such
that I : w — [“w]<* and F is a collection of functions Fj,, for n € w and n € n(n)

which satisfy the following conditions.
1) Fsn: ™2 — P(*“w) and each element of Im(F} ,) is a leafless subtree of <“w.

2) (3s € "2)x,, € [Frn(s)].
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3) given {ni,na} = n(n), (Vs1,s2 € "2) one of the following relationships holds
between the sets C 1= [Fj, (51)] and Cy := [Fj , (52)]:
3a) Cy = Cy and if either x,, € Cy or x,, € Cy, then x,, = z,,;

3c) C1 N Cy = (), and moreover there is an [ € w such that all elements of C

deviate from all elements of Cy before level (.

We do not need all parts of the definition for the next proposition. Specifically,
we can replace 3a) with the weaker statement that if x,, € Cy, then x,, = z,,. Also,
we do not need the function I and we can replace 3b) with the weaker statement
that (Jz € “w) Cy = Cy = {z}. Later, when we show there is always a separation
device in the ground model when we perform Sacks forcing, we can easily build the

device to satisfy the following additional property for all 7 € w and n € n(n):

4) (Vs1,52 € ™2) one of the following relationships holds between the sets C} :=

[Fﬁ,n(sl)] and CQ = [Fﬁm(Sz)]:

4&) (ElZE S ](n)) Ci =0y = {l’},
4b) C1 N Cy = B, and moreover there is an [ € w such that all elements of Cy

deviate from all elements of Cy before level .

Note this is a requirement on the single function Fj, where n € n(n), and not a

requirement on the pair of functions (F ,,,, F n,) where {ny,na} = n(n).

Proposition VI.19. Let X = (z, : n € w). Suppose
D=(F,I)eM

1 a separation device for X. Then there is a Borel function g : “w — “w that has a
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Borel code in M satisfying
(Vo € “w) fr(z) <* g(x).
Proof. For each n € w, let T,, C <“w be the tree
T, := ﬂ{UIm(an) newAnen(n)}.
That is, for each t € <“w, t € T,, iff

(Vi € w)[n € (A) =t € | Fanls)].

s€™2

By part 2) of the definition of a separation device,
(Vn € w)x, € [T,).

Let e(ng) be the least level I such that if n; < ng, n satisfies n(n) = {ny,n2}, and
S1, 82 € "2 satisfy [Fyn, (51)] N [Fan,(s2)] = 0, then all elements of [F, ,,, (s1)] deviate
from all elements of [F} ,,,(s2)] before level [.

Let g : “w — “w be defined by
g(x)(n) = max{Exit(T,)(z),e(n),n}.

Certainly ¢ is Borel, with a code in M (because D € M). Just like in the previous

proposition, since z,, € [T},], for all z € “w and n € w we have

v & [Th] = fx(x)(n) < g(x)(n).

Suppose, towards a contradiction, that there is some x € “w satisfying fx(x) £* g(z).

Fix such an z. Let A be the infinite set

A={new: fxlo)n) > g(x)(n)}.

It must be that = € [T,,] for each n € A. Since A is infinite, we may fix ny,ns € A

satisfying the following:
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i) ny < no;
ii) fr(z)(ny) < no.
Let 7 satisfy n(n) = {n1,ns}. Since z € [T,,], fix some s} € "2 satisfying
z € [Fhn, (s))] =: Ch.
Also, since ,, € [T},], fix some s, € "2 satisfying
Ty € [Fan,(s2)] =: Co.

By the definition of e(ny) and the fact that Exit([[x,,]])(z) > e(na), it cannot be
that C; N Cy = (). Thus, by part 3) of the definition of a separation device, one of

the following holds:
a) Tpy = Tpy;
b) C; = Cy = {z}.

Now, b) cannot be the case because Cy = {z} implies z,, = =, which implies
fx(z)(n2) = 0, which contradicts the fact that fy(x)(n2) > g(x)(n2). On the other
hand, a) cannot be the case because z,,, = x,, implies fy(z)(n1) = fx(x)(n2), which

by ii) implies

fa(@)(ng) = fa(z)(m) < ny < g(a)(ns) < fa(2)(na),

which is impossible. O

We will soon prove that there is always a separation device in M for a sequence
X when V is a Sacks forcing extension of M. First we present a forcing lemma that
is a basic building block for separating z,, from x,,. Combining this with a fusion

argument gives us the result.
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Lemma VI.20. Let P be any forcing. Let pg,p1 € P be conditions. Let 7o, 7 be
names for elements of “w. Suppose that there is no x € “w satisfying the following

two statements:

1) Po I ’7.'0 :jf,'
Then there ezist py < po; P} < p1; and to, t1 € ““w satisfying the following:

3) to Lty

4) p6 In 7'_0 g EO;
Proof. There are two cases to consider. The first is that there exists some x € “w
such that 1) is true. When this happens, 2) is false. Hence, there exist t; € ““w
and p] < p; such that 5) is true and x L ¢;. Letting p{, := po and ¢, be some initial
segment of x incompatible with ¢;, we see that 3) and 4) are true.

The second case is that there is no = € “w satisfying 1). When this happens,
there exist conditions pg,py < po and incompatible nodes s,,s, € <*w satisfying
both p§ IF 79 2 5, and pg IF 79 3 8. Now, it cannot be that both p; IF 71 J s, and
p1 IF 71 3 8. Assume, without loss of generality, that p; If 7 3 §,. This implies

that there exist p| < p; and t; € <“w such that s, L ¢; and p} I- 7, 3 {;. Letting

Py = pg and ty := s,, we are done. H

At this point, the reader may want to think about how to use this lemma to prove

that if V' is a Sacks forcing extension of M and X = (z,, : n € w) satisfies

(Vnew)x, € M
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and

{(n1,mns) : Ty, = Tp,} € M,

then there is a sequence T of subtrees of “w satisfying the hypotheses of Proposi-
tion VI.17.

The next lemma explains the appearance of I in the definition of a separation
device. We are intending the name 7 to be such that 7(n) refers to the x, in the

sequence X = (x, : n € w).

Lemma VI.21. Consider Sacks forcing S. Let p € S be a condition and T a name
satisfying p - 7 1 w — “w. Then there exists a condition p’ < p and there exists a

function I : w — [Yw]|= satisfying

P IE(Vnew)r(n) eV — 7(n) € I(n).

Proof. We may easily construct a function R : w — S that satisfies the conditions
of Lemma C.4 such that R(f)) < p and for each s € "2, either R(s) IF 7(n) € V or

(3z € “w) R(s) IF 7(n) = Z. Define I as follows:
I(n) ={z€“w: (s € "2) R(s) IF 7(n) = z}.

Let p’' .=, U{R(s) : s € "2}. The condition p’ and the function I are as desired.
[

We are now ready for the main forcing argument of this section.

Proposition VI.22. Consider Sacks forcing S. Let p € S be a condition and 7 be
a name satisfying p I 7 : w — “w. Then there exists a condition ¢ < p and there

exists a pair D = (F,I) satisfying

q - D is a separation device for (7(n) : n € w).
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Proof. First, let p’ < p and I : w — [“w]<* be given by the lemma above. That is,
for each n € w,

P I 7(n) €V — 7(n) € I(n).
We will define a function R : <¥2 — S with R((})) < p’ satisfying conditions 1) and
2) of Lemma C.4. At the same time, we will construct a family of functions

F = (Fan:ne€wmnen(n)).

Our ¢ will be
q:= ﬂ U R(s).
n sen2

The function Fj, will return a leafless subtree of <“w. We will have it so for all

n € w and all n satisfying n € n(n),
(Vs € "2) R(s) IF 7(11) € [Frn(3)].

Thus, ¢ will easily force that D satisfies conditions 1) and 2) of the definition of a
separation device. To show that ¢ forces condition 3) of that definition, it suffices
to show that for all {n;,ns} = n(n) and all s1,s, € "2, one of the following holds,
where T} := Fj ,,,(s1) and Ty := Fj 5, (82):

3a’) Ty = Ty and (Vs € ™2),

R(s) IF (7(7y) € [T1] V 7(1g) € [To]) — 7(121) = 7(12g);

3b') (3x € I(ny) N1(ny)) [Th] = [To] = {z};
3c¢) [Th] N [Tz] = 0, and moreover Stem(77) L Stem (7).

We will define the functions Fj ,, and the conditions R(s) for s € 72 by induction

on 7. Beginning at 7 = 0, let {ny,na} = n(0). We will define Fp,, : °2 — S,
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Fom, : %2 = S, and R(0) < p/. If p’ IF 7(R1) = 7(1g), then let R(D) := p’ and
define Fy,,, (0) = Fon,(0) = T where T C <“w is any leafless tree satisfying p’ IF
7(fny) € [T]. This causes 3a’) to be satisfied. If p/ I 7(71) = 7(7), then let
t1,ta € <“w be incomparable nodes and let R(0) < p’ satisfy R(0) IF 7(7,) 2 £; and
R(D) Ik 7(n9) 3 f5. Then we may define Fy,,, (0) = Ty and Fy,,,(0) = To where T}
and Ty are leafless trees such that Stem(7%) 3 ¢y, Stem(T5) 3 ty, R(D) IF 7(7,) € [T1],
and R(D) IF 7(ny) € [Ty]. This causes 3c’) to be satisfied.

We will now handle the successor step of the induction. Let {ni,n2} = n(n)
for some 7 > 0. We will define R(s) for each s € "2, and we will define both
Fin, and Fj,, assuming R(s') has been defined for each s’ € <"2. To keep the
construction readable, we will start with initial values for the R(s)’s and the Fj,,’s,
and we will modify them as the construction progresses until we arrive at their final
values. That is, we will say “replace R(s) with a stronger condition...” and “shrink
the tree Fj,(s)...”. When we make these replacements, it is understood that still
R(s) IF 7(7) € [Fi.n(3)]. The construction consists of 5 steps.

Step 1: First, for each s € Y2, let R(s0) and R(s™1) be arbitrary extensions
of R(s) such that Stem(R(s70)) L Stem(R(s™1)). Also, for each n € {ny,ny} and

s € "2, let Fj,(s) be an arbitrary leafless subtree of <“w such that R(s) IF 7(n) €

Step 2: For each s € "2 and n € {ny,n,}, strengthen R(s) so that either R(s) I-
7(n) € V or (3w € I(n)) R(s) IF #(i) = &. If the latter case holds, shrink Fj_,(s) so
that it has only one path.

M: Fix n € {ny,ne}. For each pair of distinct sy,s5 € n2, strengthen each
R(s1) and R(s2) and shrink each Fj,(s1) and Fj ,(s2) so that one of the following

holds:
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i) Bz e I(n) [Fan(s1)] = [Fan(s2)] = {z};
ii) Stem(Fy,,(s1)) L Stem(F5 ,(s2)).

That is, if i) cannot be satisfied, then we may use Lemma VI.20 to satisfy ii).
Step 4: For each pair of distinct s;, s, € ™2 such that either R(sy) IF 7(7y) & V
or R(sy) IF 7(ig) € V, use Lemma VI.20 to strengthen R(s;) and R(sy) and shrink

Fin (1) and Fj (1) so that
Stem(Fﬁ,m (81)) 1 Stem(Fﬁm (82)).

Step 5: For each s € "2, do the following: If R(s) I- 7(;) = 7(f2), then replace
both Fj ,, (s) and Fj ,,(s) with Fj o, (s) N Fyp,(s). Otherwise, strengthen R(s) and

shrink Fj ,,, (s) and Fj ,,(s) so that
Stem(Fj p, () L Stem(Fp ,(5)).

This completes the construction of {R(s) : s € "2}, Fj,,, and Fj,,,. We will now
prove that it works. Fix s1, sy € "2 and let T} := Fj,,,(s1) and Ty := Fj n,(s2). We
must show that one of 3a’), 3b’), or 3¢/) holds. The cleanest way to do this is to
break into cases depending on whether s; = sy or not.

Case s1 # so: If either R(sy) IF 7(n1) € V or R(s2) Ik 7(ng) & V, then by
Step 4, we see that 3¢’) holds. Otherwise, by Step 2, (3z € I(n1)) [T1] = {z} and
(Jz € I(ny)) [Tx] = {x}. Hence, easily either 3b’) or 3¢’) holds.

Case s = s9: If R(sy) Iff 7(n1) = 7(ng), then by Step 5, we see that 3c’) holds.

Otherwise, we are in the case that
R(s1) Ik 7(n1) = 7(ng).

By Step 5, Ty = Ty. Now, if R(s1) IF 7(7;) € V, then of course also R(s;) IF 7 (i) €

V, and by Step 2) we see that 3b') holds. Otherwise, R(s;) IF 7(1) € V. Hence,
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[T}] is not a singleton. We will show that 3a’) holds. Consider any s € 2. We must

show

R(s) IF (#(n) € [Th] V 7(7g) € [T1]) — 7(71) = 7(i1a).

If s = s1, we are done. Now suppose s # s;. It suffices to show

R(s) IF =(7(ny) € [T1]) V 7(ng) € [T1]).

That is, it suffices to show R(s) IF 7(11) & [T1] and R(s) IF 7(7y) & [T1]. Since s # s

and [T1] is not a singleton, by Step 3, Stem(Fj ,,(s)) L Stem(77). Recall that

R(s) IF 7(n) € [Fan(3)]

Hence, since [F;,(3)] N [Ty] = 0, R(s) IF 7(7y) ¢ [T1). By a similar argument,

R(s) IF 7(ny) ¢ [T1]. This completes the proof. O

We now have the desired result of this section:

Corollary VI.23. Let X = (x, € “w : n € w). Assume V is a forcing extension
of M by the forcing to add a single Sacks real. Then there is a Borel function

g :Yw — “w that has a Borel code in M satisfying
(Vr € “w) fx(z) <" g(2).
Proof. Combine Proposition VI.19 and Proposition VI.22 together. m

A natural question now is which forcings are such that each fy : “w — “w in the
extension is pointwise eventually dominated by some function in the ground model.
More combinatorially, we may ask about the property that every sequence of reals in
the extension has a separation device in the ground model. We have shown that Sacks
forcing has this property. It is not obvious whether all “w-bounding forcings have

this property. It is also not obvious whether the Sacks property implies this property.
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6.3 Long Projective Well-orderings

In the next chapter, we will prove Theorem VII.28. In the statement of that
theorem, it is natural to conjecture that we can remove the requirement that g be
Borel and replace it with the weaker requirement that g be projective. This would
yield a “Projective Dominator Coding Theorem”. Specifically, one could conjecture

the following:

Conjecture VI1.24. For each projective function g : “w — “w there is a countable
set G(g) C P(w) and for each A C w there is a projective function fa : “w — “w

such that if g : “w — “w satisfies (Vo € “w) fa(z) <* g(z), then A € G(g).

What we have in mind for G(g) is the set of elements of P(w) that are definable
in the language of set theory using g as a parameter. This conjecture may follow
from projective determinacy or large cardinals, which would be very interesting, but
there is an obstruction to proving it in ZFC alone. Specifically, the conjecture is false

when we assume the following:
1) There is a projective well-ordering of “w;
2) wy < b;
3) The map (A, x) — fa(z) is projective.

Let us explain. Statement 2) is equivalent to each subset of “w of size < w; being
bounded in the poset (“w,<*). Statement 3) is satisfied by reasonable encoding
schemes (and it is satisfied in Theorem VII.28) There is a model of ZFC which
satisfies the first two statements: In [19], Harrington constructs a model in which
MA + =CH holds (and therefore b = 2¥) and there is a projective well-ordering of

the reals.
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Assume 1), 2), and 3). Let < be a projective well-ordering of the reals, and let
(A € P(w) v < )

be the enumeration of P(w) in the order given by <. Note that it might be the case

that v > 2 (but still |y| = 2¢). Since wy < b, for each x € “w the set

{fa,(z) E°w:a <w}

is bounded in the poset (“w,<*). Consider the function ¢’ : “w — “w defined by

g'(z) := the < -least y € “w such that (Vo < wy) fa,(z) <*y.

Note that the ordering < is used twice in the definition of ¢’. Since < is a projective
well-ordering, ¢’ is a projective function. There cannot be a guessing scheme g +—

G(g) which accompanies A — f4 to satisfy the conjecture, because (Vo < wy)

(Va € “w) fa. () <" g(),

and it is impossible to guess all of the uncountably many sets A, for a < w; from g

using only countably many guesses.

6.4 Beyond Pointwise Eventual Domination

The purpose of this section is to provide an upper bound for the type of result in
the spirit of Theorem 6.2, which we will prove in the next chapter. Specifically, one
might ask the following: for each A C w, is there some Borel function f : “wx“w — w

such that if g : “w x “w — w is Borel and satisfies

(*) (Vr € “w)(3e € “w) f(r,c) < g(r, ),
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then A is definable from any code for g7 That is, the functions are from “w x “w
to w, instead of “w X w to w. We will now show that this is not a theorem of ZFC.
Specifically, we will show that it is false assuming —CH.

Temporarily let R denote the binary relation defined by fRyg iff (*) holds. Tt
suffices to show that there is a size w; family G of Borel functions from “w x “w
to w such that for each Borel f : “w X “Yw — w, there is some g € G satisfying
fRg. Combining this with =CH and assuming towards a contradiction that there
is such an encoding scheme A +— f4, by the pigeonhole principle there must be an

uncountable set A C P(w) and a single g € G satisfying
(VA S .A) faRg.

This contradicts the hypothesis on the encoding scheme A — f4 because for each g,
there are only countably many A € P(w) that are definable (in the language of set
theory by a formula) using a fixed code for g as a parameter.

The trick is the following easy lemma which allows us to perform a diagonalization:

Lemma VI.25. For each o < w, there is a function g, : “w X “w X “w — w whose
graph is X2, such that if f:“w x “w — w is any function whose graph is ¥, then

there is some a € “w satisfying
(V?”, ceE wW) f(h C) = ga(a7 T, C)'

Proof. Let X, C “w X “w X “w X w be a universal 39 set. That is, X,, is X2 and for

each X0 set S C “w x “w X w, there is some a € “w satisfying
(Vr,c € “w)(Vn € w)[(a,r,¢,n) € Xy & (r,e,n) € S].

We will define g, to be a function whose graph is 3% |, were the a-th section of its

graph is the same as the a-th section of X, whenever the latter section is the graph
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of a function. That is, for each a,r, ¢ € “w, define g,(a,r, c) as follows:

n if (a,r,c,n) € Xo A (Tm) (a,r,c,m) € X,,
gala,r c) =
0 if =(3'm) (a,r,c,m) € X,.

This is indeed the graph of a function. Breaking the definition into cases, we see
that
gala,r,c)=n < [n=0A(Ymew)(a,r,c,m) & X,V
[n=0A (Imy,me € w)my # ma A
(a,r,e,my) € Xo A (a,r,¢,ms) € X,| V
[(a,r,¢,n) € Xo A (Ym € w)m #n =
(a,r,e,m) & Xl
Since X, is X0, the graph of g, is a boolean combination of X2 sets, soitis 39, ,. O

Proposition VI.26. For each o < wy, there is a function g : “w X “w — w whose

graph is X2, such that if f:“w X “w — w is a function whose graph is X2, then

(Ja € “w)(Vr € “w) f(r,a) = g(r,a),

so of course

(Vr € “w)(Jec € “w) f(r,c) < g(r, c).
Proof. Fix o < wy. Let g, be given by the lemma above. Define g : “w x “w — w by
g(r,c) = galc,r,c).

Certainly the graph of ¢ is X2 ;. Now, let f : “w x “w — w be an arbitrary function

whose graph is 0. By the hypothesis on g,, there is some a € “w satisfying

(Vr,c € “w) f(r,c) = gala,r,c).



154

Thus,

(\V/T € ww) f(T‘, CL) = ga(av Ty a) = g(T, a)7

and we are done. O

Hence, there is a size w; family G of Borel functions from “w x “w to w such that

for each Borel f:“w X “w — w, there is some g € G satisfying (*).



CHAPTER VII

Pointwise Eventual Domination Coding Theorems

This chapter is the centerpiece of this thesis, and it contains the deepest results.
The encoding techniques we developed to handle functions from “w to w were a
warm-up to handle Borel functions from “w to “w. The guiding task will be to prove
that B, (“w, <*) = 2% when « > 1, but the proofs yield much more.

In the first section, we show how to overcome the problem that the naive vertical
encoding scheme had in Section 6.2. The solution to this problem actually gives us the
encoding scheme A — f, for Theorem VII.28. However, proving that this encoding
scheme works is very complicated. We need to perform a forcing-like argument.
Section 7.2 is devoted to understanding the poset involved in the argument.

In Section 7.3, we study the situation where f4 <* g and g is a Baire class one
function. This is the first non-trivial case of the more general problem where g is
Borel. We will construct a morphism from B; (“w, <*) to (P(w), <a1). In Section 7.4,
we will describe the problems we encounter when g is Baire class two. Getting past
this point is a major obstacle. Our approach is to take a step back and understand
the abstract purpose of the orderings < and <* introduced in Section 7.2. We will
see exactly how we are supposed to use the Prikry-like condition which this pair of

orderings satisfies. There is an additional complication which we must endure (the
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U function) to get the complexity class Al instead of something larger. Although
this is an additional maneuver separate from the other ideas, it drastically affects
the structure of the proof.

In Section 7.6 we prove the main theorem: for each A C w and each Borel

g “w — “w which satisfies

(V& € “w)(3i € w) falx)(i) < g(x)(D),

A is Al in any code for g. In the final section, we will see that the proof of that
theorem yields a rather incredible result: if X and Y are Polish spaces with X
uncountable, then for each A C w there is a Borel function f : X — Y such that

whenever g : X — Y is Borel, one of the following holds:

1) Bz € X) f(z) = g(2);

2) Ais Al in any code for g.

7.1 Less Naive Coding

In the last chapter, we discovered an obstacle for converting the proof that
cf B, (w,<) = 2¢ into a proof that cfB,, (Yw, <*) = 2¥. Specifically, we showed
in Section 6.2 that ZFC cannot prove that given any a € “w, there exists a sequence
of reals X = (z,, € “w : n € w) such that whenever g : “w — “w is a Borel function
with code ¢ and satisfies fx <* g, then a € L[c]. The problem is that it is consistent
(when V' is a Sacks forcing extension of an inner model by adding a single real) that
every sequence X of reals can be sufficiently “shrink-wrapped” (using a separation

device) without full knowledge of X'.
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Although no such “naive vertical coding” a +— fy can work, only a slightly more

complicated encoding will work. That is, given a sequence of trees
T =(T, C~“w:n € w),
let fr:“w — “w be the function

fr(x)(n) = Exit(T,,)(x).

As a consequence of Theorem VII.28 which we will prove in a few sections, for each

real a € “w, there exists a sequence T of trees satisfying
ThoCTy CTy C ..

such that whenever g : “w — “w is a Borel function with code ¢ which satisfies
fr <* g, then a € L[c]. Let us explain the intuition very informally. The trees
should encode the information in a so that anybody who has a real € “w but does
not know a will have difficulty upper bounding exactly when z exits the tree T,, (if
it does at all). Tt is helpful if we define the trees so that for each n € w, the shortest
node of x which is not in 7), is still in 7},.1. Moreover, the T},’s should somehow
“look the same” in the sense that the nodes in T}, — 7}, can be mistaken as nodes
in 7, by somebody who does not know a. For example, we do not want all the nodes
in T,,+1 — T;, but none of the nodes in 7, to contain the number 5.

We can give a simple description of the sequence of trees 7 we will use in The-
orem VII.28. That is, first define from a € “w any set A C w which codes a. In
the proof of that theorem we will build in the additional assumption that A is com-
putable from every infinite subset of itself, but this does not matter here. Then let

T,, be the set of all t € <“w satisfying

|{l € Dom(t) : t(l) € A}| <n.
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Hence, z exits T,, at the level when z enumerates an element of A for the (n 4 1)-th
time. The reader should be convinced that T satisfies the informal hypotheses we
described in the last paragraph.

This next proposition proves that indeed each a € “w can be encoded into a
sequence of trees T such that a € L[c|] whenever ¢ is a code for a Borel function

g “w — “w satistying fr <* g and g is of the form

9(x) = max{Exit(5,)(s),y(n)}

for some sequence of trees (S, C <“w : n € w) and some real y € “w. Hence, we may
overcome the obstruction we discovered in Section 6.2, because the Borel function ¢
we defined there from a separation device was of this form. The reader who trusts us
may skip this proof with no loss of continuity. The proof of this proposition uses a
different sequence of trees than the one described in the paragraph above to simplify
the argument. Also, the trees T}, are subtrees of <“3 instead of <“w, which makes the
statement slightly stronger. The idea of the proof is for the trees T,, to get bushier

and bushier in a homogeneous way.

Proposition VIIL.1. For each a € “2, there is a sequence of trees T = (T,, C <“3:
n € w) such that whenever y € “w and M is a transitive model of ZF which does not
contain the real a but does contain a sequence of trees (S, C <“3:n € w) satisfying

(Vn € w)T,, C S,, then there exists an x € “3 satisfying the following for all n € w:
1) z € [S,] — [Tn];
2) y(n) < Exit(T,)(x).

Proof. Let (B, Cw :n € w) be a sequence satisfying
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e (Vn € w) B,y1 — B, is infinite.

Certainly, we may choose such a sequence so that it is in every transitive model of
ZF. For each n € w, B,, will be the set of levels of T}, that are bushy. That is, the
numbers in B, will be the levels of T,, where nodes have exactly 3 children. The
other levels will be where nodes of T,, have exactly 2 children. Assume, without loss
of generality, that a is computable from each restriction a | (B,+1 — B,). Define T,
to be the unique tree such that () € ¢ and for each t € T,

{a(lt]), 2} it [t] & B,
Sucer, (t) =

{0,1,2} if [t| € B,.
Notice that

ThCTy CT, C ...

Now fix a transitive model M of ZF which does not contain a € “2 but which does
contain some fixed sequence of trees (S, C <“3 : n € w) satisfying (Vn € w) T, C S,.
Also fix y € “w. We must build some z € “3 satisfying 1) and 2) for all n € w. Here
is the crucial step: by possibly shrinking each S,,, we may assume without loss of
generality that

SﬁgslgSZQ-”a

and for all t € S,,,

{2} € Suces, (1) € {0,1,2)

and

|Succg, (t)| > 2.
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For example, if there was a node ¢t € Sy satisfying |Succg, (t)] < 1, then M knows
that t € Tp, so M can remove t from Sy to get a smaller tree. Now to satisfy 1), we
need only have z € Sy and (Vn € w)x & [T,,].

We claim that for each n € w and t € Sy, there exists an extension ¢’ of ¢ in S
such that |t'| € B,y1 — B, and 1 — a(|t'|) € Succg,(t'). Moreover, t' can be chosen
to be of the form ¢t~27...72. Suppose, towards a contradiction, that this is not the
case. Fix n € w and t € Sy such that there is no such extension t’ of ¢t. Since every
element of Sy has at least two successors, it must be that for each extension ¢’ of ¢
of the form ¢727...72 whose length is in the set B, — By, Succg, (') = {a(|t']), 2}.
Hence, for each i € {0,1} and each k € B,,,1 — B,, greater than |t|,

k—|t]
a(k) = i < [Suces, (=T ) = {i,2}].
Since we assumed a is computable from a [ (By,41—B,,) and Sy € M, we have a € M,
which is a contradiction. This establishes the claim.
We will now construct an x satisfying 1) and 2). We will inductively construct a

sequence (t, € ““w :n € w) so that
toCty Eta ...

and for all n >0, t, € SoNT, = T,,—y and t,, [ y(n — 1) € T,_y. Then z :=J, o, tn
will be as desired.

Let to := (0. We will now pick ;. Of course, ty € SyNTy. By the claim we showed
earlier, there exists an extension ¢ of ¢ of the form ¢;°27...72 of length at least y(0),
such that |t'| € By — By and 1 — a(|t'|) € Succg,(t). Because ty € Sy N1y and each
node in both Sy and Ty has a child when concatenating 2, we have that ¢’ € Sy N Tj.

efine t; := —a . construction 1 € 5y. e passage rrom t' to iy
Define t; := (1 — a(|t'])). By ion t; € Sp. Th ge from t' to t

consists of exiting from 7;, but staying within 7}, ;. That is, since |t'| &€ By, we have
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t1 & Ty. Since |t'| € By, we have t; € Ty. Finally, t; | y(0) € Tp, because |t'| > y(0)
and t' € Ty.

We may now pick t5 in a similar fashion. We have t; € Sy N T;. By the claim we
showed earlier, there exists an extension ¢’ of ¢; of the form ¢7727...72 of length at
least y(1), such that |t'| € By — By and 1 — a(|t']) is a successor of ¢’ in S;. Because
t; € Sy N1y and each node in both Sy and T} has a child when concatenating 2, we
have that ' € SoNT}. Define ty := ¢t (1 —a(|t])). Like before, ty € SoNTy — T} and
trly(l) € Th.

We may construct ts,ty, ... in the same way, and the proof is complete. O

7.2 Reachability

Within this section, we will present some key concepts needed for Theorem VII.28.
We will also use them in Section 7.3 where we warm-up by considering only Baire
class one functions. The reader may wish to skip to Section 7.3, returning to this

section when needed.

Definition VII.2. Given a set A C w and a pair of nodes ¢, € <“w such that

t' Jt, we say that ¢’ does not hit A more than t if for all [ € Dom(t') — Dom(t),

t'(l) ¢ A.
In this situation we write ' J* ¢ (and it should be clear from context what is the set

A to which this notation refers).

The intended use for this definition is to facilitate the construction of areal x € “w
as the union of a sequence of nodes ty C t; C .... If ¢, 3* t;, then ¢, does not

decide more of the value f(z) than t; does. This idea will be clear later.
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Definition VII.3. Given a node t € <“w and a function h : ““w — w, a node
t' € <Yw is said to be an extension of t to the right of h, written t' Jj, ¢, if ¢’ J t and
for all I € Dom(t') — Dom(t),

#(1) > h(# 1),

We make the similar definition of x Jj, t where x € “w. If both ¢ Jj, t and ¢/ 2J* ¢

for some fixed set A C w, then we write ¢’ Jj ¢.

Definition VII.4. Given hq, hy : <“w — w, we write hy < hy if

(Vt € <“w) hi(t) < ho(t).

The following is crucial:

Definition VIL.5. Given a set S C <“w and a node t € <“w, we make the following

definitions:
e 1 is 0-S-reachable if t € S,

e t is a-S-reachable for « satisfying 0 < o < wy if either ¢ is [3-S-reachable for

some [ < «, or {n € w:t"nis B-S-reachable for some J < a} is infinite;

e ¢ is S-reachable if ¢ is a-S-reachable for some o < w;. The smallest such o we

call RRank(t, S).

The restriction to countable ordinals is not a loss, because if we extend the defi-
nition to all ordinals we would see that each node that is already 7-S-reachable for

some ordinal v is a-S-reachable for some o < wy.

Proposition VIL.6. Ift € <“w is not S-reachable, then

(Fh: Yw = W)V T )t & S.
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Proof. If a node is not S-reachable, then only finitely many of its children are S-
reachable. Hence, we can choose h : ““w — w such that (V' Jj t)t’ is not S-

reachable. In particular, (V' 3, t)t & S. O

On the other hand, one can see that if t € <“w is S-reachable, then
(Vh: <Yw — w)(3t' T, t)t € S.

However, in a certain situation, an even stronger statement holds (Proposition VIL.9).
Recall that w{(S) is the first admissible ordinal over S. That is, the smallest
a such that L,[S] is a model of Kripke-Platek set theory. Equivalently, this is the

supremum of the ranks of all well-founded trees recursive in S.

Lemma VIL.7. Given S C <“w, the set of nodes that are S-reachable is 11} in S.
Any node that is S-reachable is a-S-reachable for some a < W (S). Furthermore,

given any a < w¢E(S), the set of all nodes that are 3-S-reachable for some B < «

is Al in S.

Proof. This is an immediate consequence of the theory of inductive and hyperele-
mentary relations as developed in [38]. See also [22] for the theory of inductive
definitions. Let 2 be the standard model of arithmetic, with the ability to code
clements of <“w, adjoined with a unary predicate S for the set S. Let R be the set
of nodes that are S-reachable. In the language of [38], R is inductive on 2. That is,
consider the following second-order formula that has a first-order free variable ¢ (to

range over 2’s version of <“w) and a second-order unary free variable Y
pt,Y):=tc SvteY Vv (@)t n cY.

This is a so-called Y -positive formula because the unary predicate Y occurs positively.
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It defines a monotone operator I' : P(<“w) — P(<“w) by
DY) :={te~*w:p(tY)}

For each ordinal «, let

Ro :=T(| ] Rs).

B<a

Note that for each «, R, is the set of nodes that are a-S-reachable. Let ||p|| be the
smallest ordinal such that I'(Rj,|) = Rjj,|- We have R = R ).
R is the smallest fixed point of T', so it is inductive on 2. Hence, R is II} on the

structure 2, so it is II} in S. The closure ordinal k* of 2 is WFE(S), so

lell < K% = wi™(9).

No element first appears at the x¥-th stage of an inductive definition, so for each
t € R there is some a < w{™(9) satisfying t € R,. For any a < &%, Uz, Rp is

hyperelementary on 2L (both inductive and coinductive on ) and therefore A} in

S. O

It is not hard to find an example of a set S C <“w such that the set of nodes
that are S-reachable is I (S)-complete. As a corollary of the lemma, we have that

“being S-reachable is absolute”:

Corollary VIIL.8. Let M be a transitive model of ZF. Let t € <“w and S C <“w be

in M. Then (t is S-reachable)™ iff t is S-reachable.

Proof. This immediately follows from the lemma above and Mostowski’s absoluteness

theorem. O

This next proposition also uses the lemma above and will be crucial for Lemma VII.22.

Technically we can replace A by Al and the proof of Theorem VII.28 would not be
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affected (but the proof of Proposition VII.15 would be). However, later we want it
to be clear to the reader where Al is coming from. We remind the reader that A is

implicit in J*.

Proposition VII.9. Fiz S C <Yw. Ift € <“w is S-reachable and A C w is a set

which is Al in each infinite subset of itself but A is not Al in S, then
(Vh: Yw—w)3 J5t)t' € S.

Proof. Let ag := RRank(t,S). If ag = 0, then we are done by defining ¢ := t.

Otherwise, the set
By := {n :t"n is §-S-reachable for some 5 < g}

is infinite. By the lemma above, it is Al in S. The set B}, of all elements of By that
are > h(t) is also infinite and Al in S. It cannot be that B} C A, because if so, then
A would be A} in Bj. By the transitivity of <at, we would have that A is Alin S,
a contradiction. Thus, fix some ny € Bj — A.

Next, let oy := RRank(t"ng, S). If oy = 0, then we are done by defining t' :=

t"ng. Otherwise, the set
By :={n:t"ng nis f-S-reachable for some f < ay }

is infinite. By the lemma above, it is Al in S. The set B} of all elements of B; that
are > h(t"ny) is also infinite and Aj in S. As before, we may fix some n; € B} — A.
We may continue like this. However, the procedure eventually terminates because

we are generating a decreasing sequence of ordinals

g > 01 > ... ]
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Combining Proposition VII.6 and Proposition VII.9, we get the following crucial
fact. One can remember the following slogan: “If we can reach S, then we can star
reach S. If we cannot reach S, then we can add a constraint now to prevent us from

reaching S later even in a non-star way”.

Corollary VII.10 (Reachability Dichotomy). Fiz t € ~“w, A Cw, and S C ““w.
If A C w is Al in each infinite subset of itself but A is not Al in S, then exactly one

of the following holds:

1) t is S-reachable, in which case

(Vh: Yw—=w)3 J5 )t € S;

2) t is not S-reachable, in which case

(Fh: Yw —w)(V T, )t & S.

Frequently, we will have a pair (t,h) with ¢ € <“w and h : “Yw — w and we
will need to generate a new pair (t', h') satisfying ¢’ Jj ¢ (and possibly ¢ J7 ¢) and
h' > h. The following definition is intended to accommodate this. The reader should

think that the orderings are similar to Hechler forcing.

Definition VII.11. Define H to be the set of pairs (¢,h) such that t € <“w and
h:<“w — w. We write

(¢, 1) < (t,h)

if ¢ Jp, ¢t and W' > h. We write
(t',h') < (t,h)

if ¢ 35 t and b’ > h.
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Corollary VII.10 can now be turned into an abstract statement about the pair of

partial orderings < and <*:

Observation VII.12. Fiz A C w. Let I' be the set of subsets D of H of the form
D = {(t,h) : t € S} for some S C <“w such that A is not A} in S. Then for each

D €T and p € H, there exists p' <* p such that either
p'eDor(Vp'<p)p" &D.

Note that for an arbitrary poset P but with two orderings < and <*, the state-
ment of the observation above but redefining I' to be the set of all downward closed

subsets D of P is precisely the Prikry Condition ([18]).

7.3 Baire Class One Dominator Coding Theorem

In this section, we will prove that cf By (“w, <*) = 2“. We will do this by con-
structing a morphism from B (“w, <*) to (P(w), <a1). Specifically, we will show that
for each A C w, there is a Baire class one function f, : “w — “w such that whenever
g : “w — “w is Baire class one and satisfies f4 <* g, then A <1 ¢ where c is any
code for g. The function f4 is the same as the one we will use in Theorem VII.28.
The function is similar to f7 which we used in in Section 7.1. Let us formally define

fa now in terms of clouds, which will be useful:

Definition VII.13. Fix A C w. Given i € w, let Cs; C “w be the cloud that is

the set of all ¢ € <“w satisfying
t(jt|—1) e Aand |[{l < |t| = 1:t(l) € A}| =i.
Let fa :“w — “w be the function

fa(@)(i) := Rep(Cai)(x).
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That is, Cs; is the set of all nodes ¢ that enumerate elements of A precisely 7 + 1
times and the last value of ¢ is in A. In Section 7.1, we saw how to overcome the
obstacle we discovered in Section 6.2. Indeed, the function f4 overcomes this obstacle
(if the reader is not convinced from our comments in Section 7.1, this current section
should remove all doubt).

The mapping (A, x) — fa(z) is projective. So, from what we said in Section 6.3,
there cannot be a proof in ZFC that when ¢ : “w — “w is any function satisfying
fa <* g, then A is in some countable set associated with g. This is because con-
sistently we may have simultaneously wy < b and a projective well-ordering of “w.
Thus, in this section we must somehow use the hypothesis that ¢ is Baire class one.
We will now explain how.

Suppose g is Baire class one. Each function x — ¢(x)(i) is also Baire class one.
Hence, by Section 5.1 there exists a sequence of clouds (B; C <“w : i € w) such that
for each 7 € w,

(Vo € “w) g(2)(i) < Rep(Bi)(x).

Such a sequence can be obtained in a canonical way from any code for g. Now
suppose A is not Al in a fixed code for g. From the code, we may fix a sequence
(B; : i € w) described above such that A is not Aj in any B;. We will use this
hypothesis many times to construct an = € “w satistying (Vi € w) fa(z)(i) > g(x)(3).
Indeed, the hypothesis is used many times in Proposition VII.9, and we will use that
proposition many times.

We will construct a sequence of nodes
toCty Eta ...

and our final z will be |, t;. We will have each t; € C4,;. The basic idea is to extend
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each t;_y to t; by first hitting B; as much as possible without hitting C4 ;, and then
when we cannot hit B; any more, we hit C4; and this will give us our ¢;. Since B;
is a cloud, we can only hit it finitely many times! Unfortunately, the constraint that
we must wait to hit C'4; prevents us from obtaining a node ¢ all of whose extensions
are not in B. We must instead be content with the weaker condition that ¢ has a
cofinite set of children that are not in B;, and each of those children has a cofinite set
of children that are not in B;, etc. This was the purpose of introducing the notion of
extensions to the right of a function (¢ Jj t) in Definition VIL.3. Thus, the ability to
avoid hitting B; for the remainder of the construction can be turned into the precise
statement that there exists an h; : <“w — w such that whenever we make extensions
to the right of h;, we will not hit B;. Since given finitely many functions hy, ..., h;
we can take their maximum, we can simultaneously avoid hitting By, ..., B; for the
remainder of the construction. This next lemma encapsulates “hitting B; as much
as possible until we cannot hit B; any more”. It uses what we developed in the last

section:

Lemma VII.14. Let A C w be Al in each infinite subset of itself. Let B C <“w be
a cloud such that A is not A in B. Then for each h: <“w — w and t € <*w, there

is some t' J5 t and h' > h satisfying
(Vt" 3, t)t" & B.

Proof. Fix appropriate A, B,h,t. Let ty := t. There are two cases: either ¢, is
B-reachable or not. In each case, we apply the reachability dichotomy (Corol-
lary VII.10). If ¢o is not B-reachable, then we may fix h’ > h such that (V" >,
to)t" & B, and we are done. Otherwise, ¢, is B-reachable, and we may pick t{ 3} to

such that t{, € B. Properly extend ) to some t; Jj t{, (so t1 # t{,).
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We may continue and again there are two cases: either ¢; is B-reachable or not.
If t; is not B-reachable, then we may fix b’ > h such that (Vt"” >, t1)t" & B, and we
are done. Otherwise, ¢ is B-reachable, and we may pick ¢; J7 ¢; such that ¢} € B.
Properly extend ¢} to some ¢, J7 ¢]. Again, we may again break into cases.

We claim that this procedure eventually terminates. If not, then we have an
infinite sequence

/ / /
#HCtCHC ..

of distinct nodes, all in B. This contradicts B being a cloud. O

We may now present the main result of this section. It uses the function f, in

Definition VII.13.

Proposition VII.15. For each A C w, whenever g : “w — “w is a Baire class one
function satisfying
(Vo € “w)(Fi € w) falx)(i) < g(x)(i),

then A is A} in any code for g.

Proof. Without loss of generality, assume that A is Al in each infinite subset of
itself. Indeed, it is straightforward to show that each A is Turing equivalent to a
set B which is computable from every infinite subset of itself. Let g : “w — “w be
Baire class one. Assume that A is not Al in g. There exists a sequence of clouds

(B; € ““w : i € w) such that for each i € w,

(Vo € “w) g(x)(i) < Rep(B;)(x)

and A is not Al in B;. The fact that A is not Al in B; follows from that fact
that from any code for g, we may form the clouds B; in a canonical and simple way

(by the theory developed in Section 5.1). We will now define a sequence of nodes
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to C t1 Tty T ... such that z := (J, t; satisfies
(Vz € “w)(Vi € w) g(z)(i) < fa(z)(i).

First, use the lemma above with B := By, h the zero function, and ¢ := ) to
obtain to 3% () and hg satisfying (V¢ 3y, to) t” & Bo. Extend ty by one step tf, Jp, to
so that ¢, € Cypo. Of course, if © € “w and = 3 ¢, then f4(z)(0) = |t;|. On the
other hand, if x € Yw and x 3y, ¢, then g(x)(0) < |t;|. Thus, as long as we only
make extensions of ¢, to the right of hgy, we will have that g(x)(0) < fa(x)(0).

Next, use the lemma above again with B := B;, h := hg, and t := t;, to obtain
t1 35, to and hy > hg satisfying (Vt” 3y, t1)t" ¢ By. Extend ¢; by one step ] Jj, t
so that t§ € C4s;. By similar reasons to those before, as long as we only make
extensions of ¢} to the right of hy, we will have that g(z)(1) < fa(z)(1). Continuing

like this, our x is as desired. O

We now have the promised morphism:

Bl (WCU) S* Bl (“’w)

[

P(w) <al P(w).
Our next task is to find a morphism from By (*“w, <*) to a poset similar to (P(w), <ar).

It will become clear that < Al is too restrictive, and we will instead use < AL-

7.4 Working Towards Baire Class Two Dominators

There are several problems we encounter trying to push the argument from the
last section to Baire class two dominators ¢ : “w — “w. The crucial problem is that

given a node t € <“w, there need not exist an extension ¢’ J ¢ (let alone an extension
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t" 37 ¢ for some h) and an b’ satisfying
(3l € w)(Vz Ty t') g(x)(0) < L.
This is true of the Baire class two function ¢ : “w — “w defined by

max{z(l) : | <w} if {z(l) : | <w} is bounded,
g(x)(i) :=

0 otherwise.

Another problem is that Baire class two functions are not in general dominated by
functions represented by clouds. We need the appropriate analogue of Lemma VII.14.
In that lemma, we hit a cloud as much as possible by making J*-extensions until we
could not do so anymore. This was done to stabilize the behavior of g. There is a
more complicated way to accomplish such stabilization, with the advantage that it
generalizes to all functions in the Baire hierarchy. Let us explain the technique now
for Baire class one functions, which by now we are quite familiar with.

To simplify the discussion, let gy : “w — w be Baire class one. Let (g : n € w)

be a sequence of continuous functions from “w to w such that

(7.1) (Vo € “w) gg(z) = lim gy ().

n—oo

For each n € w, let S, € <“w be a barrier (Definition IV.3) and g, : S, = w be a
function specifying g,y as in Proposition IV.4. Fix [ € w, h : *“w — w, and A C w.
We need to make some assumption about the relationship between A and both the
sets S, and the functions §;,y. The exact assumption is that A should not be A in
any of the sets S’ we will define in the next couple paragraphs.

To stabilize gy by making J7-extensions (to ensure that the final value gy(x) is
either < [ or > [), we do the following. To begin, we start with ¢ € <“w, and Jj-

extend it to some t,, € S,, where ng = 0 (if ¢ is already below an element of S,,,
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we do nothing for this first step and set t,, := t). Without loss of generality, assume

Gno)(tn,) < 1. There are two cases. Either ¢,, is S’-reachable or it is not, where
S’ .= {t c Yy (Eln > no)t € S5, and g(n)(t) > l}'

If ¢, is not S’-reachable, then we may use the assumption that A is not A} in S’ to

apply the reachability dichotomy (Corollary VII.10) to get A" > h satisfying
(V' Dpy o)t € 5.
Hence,
(Vo Jpr tny) (YR > ng) gny(z) < L

Since g is the limit of the functions g,), we have

Thus, we have stabilized gg(x) to be <1 and we are done. The other case is that ¢,
is S’-reachable. In this case, we may also apply the reachability dichotomy to get
tn, 3}, tn, Where ny > ng and g,y (tn,) > L.

There are again two cases: either ¢,,, is S’-reachable or it is not, where we redefine
S’ to be

S'i={te~¥w:(3@n>mn)t e S, and g (t) <1}
If ¢,, is not S’-reachable, then like before we can get h' > h satisfying
(Vo Dy tny) go(x) > 1,

and we are done. Otherwise, we apply the reachability dichotomy to get t,, 37 t,,
where ny > 1y and G, (tn,) < 1
We claim that the procedure eventually terminates. If it does not, then we have

a sequence of nodes
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where for each i € w, G, (tn,) < 1if i is even, and g,y (tn,) > [ if i is odd. Thus,
defining = := |J, t;, we see that g, (x) < 1if i is even, and g,y () > [ if 7 is odd.
Hence, lim, o g(n) (x) does not exist, which is a contradiction.

Thus, to get an appropriate analogue of Lemma VII.14, we used (7.1) in place
of the hypothesis that clouds have no infinite descending sequences. This maneu-
ver is important for the proof of Theorem VII.28. To give a complete proof that
cf By (“w, <*) = 2¥ we would need to develop much of the machinery of Theo-
rem VII.28. In the next section, we will discuss the abstract role of the order-
ings < and <*. Knowing their roles, and making a few reasonable assumptions,
we will be able to reverse engineer exactly how they should be used. We feel
this is the best way to describe how to overcome the crucial problem described
at the beginning of this section (that there need not exist ¢ J ¢ and A’ satisfying
(3l € w)(Vz Jpy t') g(x)(0) < 1). We phrase the question as follows: how can we
ensure that g(z)(0) < for some [?7 In the next section, as much as possible we will
discuss < and <* without referring to their definitions (to understand their abstract

roles). This will allow us to reverse engineer the definition of ensure.

7.5 A High Level View of the Theorem

The purpose of Theorem VII.28 is to encode an arbitrary set A C w into a function
f 1 “w — “w and then prove the following: if g : “w — “w is a Borel function such

that A is not A} in some (any) code for g, then

(Fz € “w) (Vi € w) f(x)(@) > g(z)(7).

The theorem heavily uses the requirement that g be Borel. Building the x is the

fascinating part. The basic idea is to perform a forcing-like argument. That is, we
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have conditions describing the building process so far; a condition consists of the
initial segment of x together with a promise for how to perform the remainder of
the construction. Specifically, a condition is a pair (¢,h) € H with ¢ € <“w and
h : <“w — w. The final x will be the union of all ¢’s in the chain of conditions that
we construct.

There are two orderings on the set of conditions. One is the ordinary extension

ordering <. The other is the direct extension ordering <*. We will have

p1 <" p2 = p1 < po.

Without knowledge of these orderings the reader might think, in analogy with Prikry
forcing, that direct extensions are those which keep ¢ fixed and modify only A. This
is not the case! Instead, direct extensions are those extensions which do not decide
more of the value of f(z). For each condition (¢, h) and each i, at most |¢| of the values
f(z)(i) have been decided. If we do not mind making the entire proof slightly more
complicated, then we can arrange so that when we do decide the value of f(z)(i), we
can choose any value in w we want. Indeed, this is precisely what is needed to prove
the more general Theorem VII.30. However we prefer simplicity, so we simply decide
the value of f(z)(i) to be |t|. That is, we decide f(x)(i) to be the value that is the
length we have traveled in our journey to build x. This simplicity is a feature we get
by considering the domination relation instead of something more complicated.
Now, suppose we are at some condition p = (¢, h) in the construction and f(x)(7)
has been decided. If no matter how we perform the remainder of the construction
(following the promises we have made, which are built into the < ordering of the
conditions) it will happen that f(z)(i) < g(z)(i), then we have failed. Thus, when
we decide the value of f(z)(7), we must be absolutely sure we can ensure f(z)(i) >

g(x)(7). But what do we mean by ensure? Indeed, as is first evident when considering
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Baire class two functions, “ensure” cannot have the naive meaning that we decide
g(x)(7) to be some value < f(x)(i). To be clear, we say ¢ decides g(x)(i) = [ iff for

every chain of conditions
(7.2) q = (to, o) > (t1,h1) = (t2,ha) > ...

with lim, o [t;] = oo, we have g(|J, tx)(¢) = . On the other hand, “q ensures
g(x)(i) = 17 should mean that for every such chain which can result from per-
forming the remainder of the construction, g(|J, tx)(¢) = [. This seems circular
because we have not yet fully described the construction. However, we break away
from circularity by viewing the remainder of the construction as a game where Player
IT is trying to cause the final z to satisfy g(z)(i) = [, and Player I is actually the
totality of all other parts of the remainder of the construction.

Now, we have a double standard because we will decide the value f(x)(i) but we
will only ensure the value g(x)(7). We do this simply because the theorem does not
require us to take the more technical approach of only ensuring the value of f(z)(7).
By the recursive nature of the construction, the more technical approach would cause
complicated feedback. However, this point deserves careful thought.

Eventually, we will show that every condition directly extends to one which ensures
g(x)(i) = [ for some I. Once we do this, the final proof will work as follows. Start
with the top condition of the poset. Directly extend it to ensure g(z)(0) = o for
some ly. Then, extend that condition to decide f(z)(0) to be some value > [5. Then,
directly extend that condition to ensure g(z)(1) = [; for some ;. Then, extend that
condition to decide f(z)(1) to be some value > [y, etc. During this construction, we
will need to make interventions (stepping in and making direct extensions) to make
each “ensuring” into a reality. When we finish, we will have (Vi) f(z)(i) > g(z)(i).

For the rest of this section, fix i € w (to simplify notation).
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Let us now try to reverse engineer exactly what must be meant by “ensure”,
taking on faith that such a notion exists. Let us assume that the condition g ensures
g(x)(i) = [. In order to make g(z)(i) = [ true at the end of the construction, we
must almost certainly intervene infinitely often in the construction of the sequence of
conditions. These interventions should probably be direct extensions. This is because
making a non-direct extension would cause more f(z)(z) values to be decided, which
would further constrain our possible actions. Hence, we take a small leap of faith
and adopt the paradigm that we make only non-direct extensions when we are ready,
and not when we are required in order to fulfill a previously made promise that
[(@)(G) > 9(x)(j) for some j <i.

With this concession, we have a reasonable guess for the definition of ensure.
Namely, the following: p ensures g(z)(i) = [ iff Player II has a winning strategy in
the game where Player I makes extensions to the current condition (and the first
move extends p) and Player II makes direct extensions to the current condition,
where Player II wins iff the real x := | J, t; resulting from the construction satisfies
g(x)(i) = 1. Call this game G=(p,g,!). For a different function ¢’ : “w — “w, the

game G=(p, ¢’,1) has the analogous definition. Let us now fix the definition:
p ensures g(z)(i) = [ iff IT has a w.s. for G™(p, g,1).

The fact that conditions need to be directly extended infinitely often is why we
label this proof a forcing-like argument, instead of a literal forcing argument. That
is, we see no way to incorporate Player II having a winning strategy for the game
into the poset of conditions itself. However, the application of Player II's winning
strategy for the game G=(p, g,1) would be handled by a Rasiowa-Sikorski argument
that uses only direct extensions.

Now that we have a reasonable definition for “ensure”, we must ask the following:
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does every condition directly extend to one which ensures g(z)(i) = [ for some 7 We
say “directly extend” instead of just “extend” because, again, non-direct extensions
will cause additional requirements that we do not want to be bothered with. The
answer to this question is yes, but the proof is complicated. Since g is Borel, g is
either continuous or the pointwise limit of a sequence of Borel functions with strictly
smaller rank in the Baire hierarchy. If g is continuous, then it is easy to see that any
condition p can be directly extended to some p’ which decides g(z)(i), and therefore
p’ ensures g(z)(i) = [ for some [. On the other hand, if ¢ is the pointwise limit of
a sequence (g, : n € w) of Borel functions with strictly smaller rank, then we may

assume, as an inductive hypothesis, that

(7.3) (Vn,p")(3p" < p')(3l) 11 has a w.s. for G=(p", gn, 1).

Now fix p. We will argue how to directly extend p to ensure g(x)(i) = [ for some [
(using an important hypothesis on the pair <,<*). First, extend p to some py <* p
and fix [y such that II has a w.s. for G=(po, 9o, lp). Fix such a winning strategy. As
we perform the remainder of the construction, apply the winning strategy for this
game infinitely often. There are now two cases: either there exists ny > 0, p1 <* po,
and l; # lp such that II has a w.s. for G=(p1, gn,, 1), or there does not. If there
does, then fix such ny,py, 11, as well as a winning strategy for the game. Apply this
winning strategy for the remainder of the construction. We may continue and again
there are two cases: either there exists ny > ny, ps <* p1, and ly # [ such that II
has a w.s. for G=(p2, gn,, [2), or there does not. If there does, then we may continue
as before. However, we claim that eventually the other case holds. This is because

if not, then since (Vk € w) we have ensured g,, ()(7) = lx, we get that the limit

lim g,,, ()(7)

k—o0
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does not exist, which contradicts that the limit exists and equals g(x)(i). Thus, at
some point in the construction, we must have ny € w, pr <* p, and [ such that
there does not exist ng1 > ng, Pryr1 <* pr, and 1 # [ such that II has a w.s. for
G~ (Pk+1> Gngesrs le1)- Fix these values ny, py, ly; we will be here a while.

Thus, by (7.3), for each n > n; and p’ <* py, there do exist p” <* p’ and [ such
that II has a w.s. for G=(p”, gn, ), and when this happens [ must equal l;. Informally,
this can be remembered as “we can ensure g,(z)(i) for any particular n > ng, and
when we do we have no choice but to ensure it to equal [;,”. Now, we have a good idea
for how to ensure that g(x)(i) = I: Player II should use the strategy for G=(px, g, lx)

where each move consists of the following:

1) First, directly extend the current condition to some p’ so that II has a w.s. for
G=(V, gn, lx), where n > ny is the smallest n for which this has not yet been

done. Fix such a winning strategy.

2) Apply one move of the strategy from part 1). Also, apply one move of each

strategy that has resulted from applying part 1) in some previous move.

This looks like it works, but actually there is a subtle problem. That is, in order for
this strategy to work, we actually need the following strong statement to hold: for
every n > ng and p’ < py, there does exist p” <* p’ and [ such that II has a w.s.
for G=(p”, gn, 1), and when this happens [ must equal . The difference between this
statement and the one we made before is that p’ < p, instead of just p’ <* p. The
danger is that there could be p’ < p; such that when we directly extend p’ to ensure
gn()(1) = [ for some [, we actually have [ # [;. Our informal way of remembering
the weaker statement now sounds dishonest. Let us fix the problem.

Consider the set S, of conditions p’ which extend p;, such that there exists n > ny,



180

and [ # [ such that II does have a w.s. for G=(g,,p’,[). We have that no direct
extension of p, is in Sg, and we want some direct extension of p, such that no
extension of that condition is in Si. We have not yet used anything specific about
the definition of < or <*, nor have we used the hypothesis that A is not A; in g.
Here is where we use them. The set S is not arbitrary, but occurs in some specific
complexity class I'. Indeed, the definition of Sy only involves a small number of real
quantifiers and uses the sequence (g, : n € w). The following axiomatic relationship
between <, <*, and I' is what we want: whenever p is a condition and S € I' is a set
of conditions, then either there is some direct extension of p in .S, or there is some
direct extension of p all of whose extensions are not in S. We have already observed
(Observation VII.12) that our specific definitions of < and <* cause this relationship
to hold. By what we have argued in this section, we see that such a relationship is
necessary.

At this point, we have described a very general method which only uses a simple
axiomatic requirement on <, <*, and some class I'. We hope that this underlying
method will have applications beyond “encoding information into challenges”.

Everything we said so far is true, but the set S, we have defined two paragraphs
ago is, in general, more complicated than A}. Part of the complexity comes from the
poset H of conditions itself. If the reader does not mind a sloppy result, then what
we have said so far in this section, together with the specific definitions of < and <*,
can be put together into a proof. Instead of Al we have a larger complexity class.
To get the sharper result of Al we need to perform a miraculous technical maneuver.
On the one hand, the reader should think of this as an extra technicality that sits on
top of the core argument we have given. On the other hand, the maneuver affects

the structure of the entire argument.



181

Fix a well-founded tree U C <“w and for each u € U fix a Borel function g,
such that g, is continuous when u is a leaf node of U, and g, is the pointwise limit
of the functions assigned to the children of v when w is a non-leaf node. We will
introduce a recursively defined partial function ¥ taking the arguments u,t,l. The
recursiveness of the definition is so that the graph of ¥ is Al. However, proving the
function is well-defined will be done by induction (on u), and this step cannot be
isolated from other statements also being proved by induction (on u). The reader
should have the intuition that W(¢,u,l) = 1 implies that (3h : ““w — w) II has a
w.s. for G=((t,h), gu, 1) and ¥(t,u,l) = 0 implies that (Ih : <“w — w) II has a w.s.
for GZ((t,h), gu,1) (where G= and G~ are like G= but with their winning conditions
modified to use < and > instead of =). However, this fact also will be proved by
induction (on ), and this cannot be isolated from other statements being proved by
induction. To make the induction work, there is a third statement which we need
to prove by induction (on wu), which again is done simultaneously with the other
statements. The statement is that any condition (p, h) can be directly extended to
some (p/,h’) such that U(#,u,l) is defined. Once all these statements have been
proved, the proof is completed using the approach described in this section.

The function V¥ is rather disconcerting. It is difficult to say precisely what it
means. [t is defined recursively, and it only means what it means. On the other
hand, when it is defined to be a certain value, this implies a coherent statement
involving the existence of winning strategies for the Player II's of the games we
described.

When we define the ¥ function in the next section, it will take a node t instead of
a pair (t,h) € H as an argument. We thought this would simplify the presentation,

although the argument works equally well the other way, making the appropriate
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modifications. We have also taken the approach of keeping the induction on the
well-founded tree U as simple as possible (by using the games G= and G~ instead
of G7). As a side effect we must perform cleanup work afterwards, but the reader

should view this as straightforward.

7.6 Borel Dominator A} Coding Theorem

7.6.1 Fixing A, fa, g, and U

For the remainder of this section until the statement of the theorem, fix a set
A C w which is A} in any infinite subset of itself and fix a Borel function g : “w — “w
such that A is not A} in a fixed code for g. We will speak of the code for g. Such
sets A are easy to construct, and every set A’ is Turing equivalent to one which is
computable from any infinite subset of itself. The proof would still work even if we
only required A to be Al in any infinite subset of itself, but this is not important.
We will use the (horizontal) encoding function f4 (Definition VII.13).

Since g occurs somewhere in the Baire hierarchy, using the code for g we may fix
a well-founded tree U C <“w as well as a function g, : “w — “w for each u € U

satisfying the following:
1) If uw € U is a leaf node of U, then g, is continuous;
2) If u € U is not a leaf node of U, then
i) (Vnew)u~n e U,
i) (Vi € w)(Va € “w) gu(x)(i) = limy o0 gu—n(2)(0);

3) 9= 0.
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7.6.2 The function ¥

We will recursively define a partial function W. Let ¢t € <“w, u € U, and [, € w.
The reader may want to think that [ and i are fixed. We break the definition into
cases, depending on whether u € U is or is not a leaf node of U. If u is a leaf node

of U, t € “Yw, and [,i € w, then define
(

1 if (Ve 3¢) gu(x)(@) <1,

U(t,u,l,i) =90 if (Vo 3 t) gul2)(i) > L,

1 otherwise.
\

If w is a non-leaf node of U, [,i,n € w, and ¢ € {0, 1}, then define
S(u,n, e, li) :={t' € “w: (3 >n)V({H' v n' i) =c}.

If u is a non-leaf node of U, t € <“w, and [,7 € w, then define

(1 if (In € w)t is not S(u,n,0,l,i)-reachable,

(t,u,l,i) =90 if (In € w)t is not S(u,n, 1,1,4)-reachable,

1 otherwise.
\

Given ¢ € {0, 1}, the statement =W (t,u,[,i) = ¢ is equivalent to

U(t,u,l,i) L = U(t,u,l,i)=1—c¢,
so we may write the non-leaf node case of the definition of ¥ as follows:
(
1 if (In e w)(3h)(VE Ty, t)(Vn' > n)
Ut u~n' l,1) = V(' u"n' l i) =1,
U(t,u,l,i) == S0 if (3n € w)(Ih) (VY Tp t)(V0' > n)

Ut u~n' l,1) = V(' u"n' i) =0,

1 otherwise.
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Temporarily fix a non-leaf node u of U. From the definition, it is not clear
whether W (¢, u,l, i) is well-defined, because perhaps there is some n and h satisfying

(Vt' 3, t)(Vn' > n)W(t',u"n',1,i) 1. This is impossible because
(Vn' € w)(Vh)(3' Ty ) (', u"n',1,7) | .
This will be shown by proving the stronger statement
(Vn' € w)(Vh)(3t' T3 ) V(' ,u"n',1,i) | .

That is, we will show

(Vn' € w) ®(u"n',1,14),

where ® will be defined later. Thus, the fact that ¥ is indeed well-defined will be
one of the facts we prove inductively (and simultaneously) using the well-founded
tree U. These details have been included for completeness, but the reader should not
get bogged down by them. To keep the situation straight, the reader may remember

the following:
[(Vn' € w) P(u™n',1,i)] = [(Vt) V(t,u,l,i) is well-defined].

The reader should have the following intuition about W: in the proof of the
theorem, we will construct a sequence of nodes ty C t; C ... in order to construct
x =, tk. I W (tg,u,l,i) =1 for some k € w, then by the way that we will construct
the sequence of nodes, g,(z)(7) < I. On the other hand, if V(tx,u,l,7) = 0 for some
k € w, then similarly g, (z)(i) > 1.

The following is our method for upper bounding the complexity of the graph of
U. The reader who trusts us may skip to Corollary VII.17, whose statement will be

important later.
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Proposition VII.16. Assuming that U is well-defined, the graph of U is AL in the

code for g.

Proof. The idea is for trees to witness that the value of W(¢,u,l, i) is what it is.
These trees must satisfy a II] condition which we will describe shortly, and must
be well-founded which is another II} condition. For notational simplicity, instead of
putting all “scratch-work” into the tree itself, we will attach this information to the
tree using a function. We will use the following symbols: ‘0’, ‘1’, and “1".

Fix [,i. Here is the definition: call a pair (T, F) good if two conditions are
satisfied. First, T is a tree (a set of elements ordered by a relation <7 closed under
initial segments), F' is a function with domain 7', and for each t,u,[,7 there is an
element of T" of the form (c,t,u,l, i) for some ¢ € {‘1°,°0’,1"}. Second, the following

are satisfied for each s = (¢, t,u,l,i) € T:
(1) One of the following holds:
(a) ¢=1"and ¥(t,u,l,i) =1,
(b) ¢=0" and V(t,u,l,i) = 0;
(c¢) ¢ =" and U(t, u,l, i) T,

(2) If s is a leaf node of T, then u is a leaf-node of U, F(s) = (), and one of the

following holds:

(a) c=1"and (Vo Jt) g,(x)(i) <

(b) ¢ =0"and (Vx Jt) gu(z)(i) > I;

(¢) e=""and (Fx 3 ¢) gu(z)(i) <l and (3x 3 t) gu(x)(i) >

(3) If s is a non-leaf node of T', then one of the following holds:
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(a) ¢ =1" and F'(s) is of the form F(s) = {h,n} and for all ¢ J;, t and n’ > n,
there is an immediate successor s’ of s in T of the form s’ = (¢, t/,u™n/,(,1)
for some ¢ € {‘1",1"};

(b) ¢ =0" and F\(s) is of the form F(s) = {h,n} and for all ' J; ¢t and n’ > n,
there is an immediate successor s’ of s in T of the form s = (¢, ¢/, u™n’,1,1)
for some ¢ € {‘0°,1"};

(c) ¢ =1, F(s) =0, and for all h : ““w — w, n € w, and ¢ € {‘0°,‘1’} there
exists ¢’ 3, t and n’ > n and an immediate successor s’ of s in T of the

form s = (¢, t/,u™n',1,1).

The real quantifiers in case (2) of the definition are superficial because the function
gy is continuous when u is a leaf-node of U. Note that this is where the code for
g is used. However, case (3)(c) of the definition involves a universal real quantifier
(which we have written in bold) and this is essential. Thus, the property of a pair
(T, F) being good is I1] in the code for g. Since being well-founded is a II} property,
the property of (T, F) being good and T being well-founded is II} in the code for g.

There are two important facts about good pairs which follow from the fact that W
is well-defined. First, for any t,u,l, 4, there exists a good pair which witnesses that
W(t,u,l,4) is the value that it is, in the sense of case (1) of the definition. Second,
any two good pairs will agree on the value of W(¢,u,l, ). This allows us to conclude
that the graph of ¥ is Al in the code for g.

For example, consider ¢ = 1. The statement W(¢,u,l,7) = 1 is equivalent to
saying there exists a good pair (T, F') such that T is well-founded and (‘1°, ¢, u,l,7) €
T, which is a ¥} statement in the code for g. On the other hand, the statement
U(t,u,l,i) = 1 is also equivalent to saying that for all good pairs (T, F) with T’

well-founded, (‘1°,¢,u,[,7) € T, which is a II} statement in the code for g. O
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It is clear that the proposition above can be applied even when we have only
shown that U is well-defined for nodes v up to a certain rank in U. That is, for a
fixed v € U, if we know that W(¢,u/,1,4) is well-defined for all ¢,1,i and all v’ € U

extending u, then the proof of the above proposition tells us that
{(t,u,1,4,¢) : v JunV(t,u,l,i)=c}

is Al in the code for g. We record this fact in the next corollary, which will be the

only result on the complexity of ¥ we need for the remainder of the proof.

Corollary VII.17. Fizu e U, n € w, c € {0,1}, and l,i € w. Assume ¥(t,u,1,1)
is well-defined for all t and all v’ € U extending u. Then the set S(u,n,c,l,1) is A}

in the code for g.
Proof. Membership in S(u,n,c,[,i) is arithmetical in the graph of . m

We are now finished with defining ¥ and analyzing its complexity.

7.6.3 The games G<, G~, and G=

The function ¥ has an auxiliary role to the games we will now define. That is,
what we really care about is Player II having a winning strategy for either G= or
G~. However, we need the more technical ¥ function in order to define a statement

which will “induct”. We will explain this later.

Definition VII.18. Given t € <Yw, h : Yw — w, u € U, and [,i € w, let
G=(t, h,u,l,7) be the following infinite two player game: Player I first plays a pair
(to, ho) < (t,h), then Player II plays a pair (t1, hy) <* (to, ho), then Player I plays a
pair (tg, ha) < (t1,h1), etc. That is, Player I plays a pair < the current one in the

ordering, and Player II plays a pair <* the current one. The first player who breaks
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one of these rules automatically loses. Let x := |J, tx. To avoid trivialities, if x is

finite, then Player I wins. If x is infinite, then Player II wins if g,(x)(i) < L.

Notice how there is asymmetry in the game G=(t, h,u, [,i) because Player I must
play nodes which are <* extensions of previous conditions. We have an analogous
game but with > instead of <. We also have a game for =, which will not be needed
for the proof of the main theorem but will be used for the generalization in the next

section:

Definition VII.19. Given t € ~“w, h : ~“w — w, v € U, and [,i € w, let
G~ (t, h,u,l,7) be the game with the same rules as G=(t, h, u, [, 4), but with the mod-
ified winning conditions: if x := J, t) is infinite, then Player II wins if g, (x)(i) > [.
Similarly, G=(t, h,u,l,4) is the game with the same rules but if x is infinite, then

Player IT wins if g, (x)(i) = (.

A strategy for Player II for any of these games is a function taking a sequence
((to, ho), .., (tx, hi)). Given such a strategy n, we will abuse terminology by saying
“apply n to (tx, hx)” instead of “apply n to ((to, ho), ..., (tx, hx))”. Really, we need to
keep track of the previous moves in the game and give this to Player II. We suppress
these bookkeeping details to keep the proof readable. The reader should remember
the following: when we ask the Player II of a game to make a move, we tell him
which move it is, we tell him all his previous moves, and we tell him that the previ-
ous moves of “Player I” are the concatenation of all the construction that occurred
between his moves. We are lying to Player II, because there is no real Player I: there
are only Player II’s for other games (that are also being lied to) and an additional
special Player T (who will only show up in the body of the proof of the main theorem)

and we concatenate their moves together to create a phantom Player I move.
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7.6.4 The statement ®

Because the theorem is proved using a complicated induction, we introduce formal
statements to stand for the inductive hypotheses. This will also make the structure

of the argument more visible. Given u € U and [, € w, let ®(u,,1) be the statement
D (u,l,i) &= (Ve “w)(Vh)
(3t" 35 1)
Ut u,l, i) .
Assume u is a non-leaf node of U. Unraveling the definitions, if we assume
(Vn' € w) @(u"n',1,17),
then ®(u,l,7) is equivalent to the statement that for all (t,h) € H, there exists
t' 35 t, n € w, and ¢ € {0, 1} such that
t" is not S(u,n, ¢, 1,i)-reachable.

Let us quickly explain why: The assumption (Vn' € w)®(u"n',l,7) implies that
U(t', u,l,i) is well-defined. Then, W(t',u,l,7) | iff (3¢ € {0,1}) ¢ is not S(u,n,c,l,1)-

reachable.

7.6.5 The statements Z< and =~ connecting ¥ to G= and G~

We now must connect ¥ to the games. We do this by introducing a formal
statement, which also must be proved simultaneously by induction (on u). Let

Z=(u,1,1) be the statement
E=(u,l,i) & (VE € ““w)[V(t,u,l,i) =1

= (3n) 1 has a w.s. for G=(t, h,u, l,1)].
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Let =~ (u,l,4) be the statement

27 (u,l,i) & (Vte ““w)|¥(tuli)=0

= (3h) 11 has a w.s. for G~ (t, h,u,l,1)].

For fixed [,i € w, we will show by induction on the rank of w in U that ®(u,l,1),
==(u,l,1), and =~ (u,l,7) hold. This will take a fair amount of work. Note that for

all u,l,1,

O(u,l,i) NZ=(u,1,4) N2 (u,l,i) = (V(t,h) € H)
(3@, R) < (8, h)]
IT has a w.s. for G=(¢', b/, u,1,4) v

IT has a w.s. for G~ (', 1, u,l,1)].

For fixed [, € w, one might hope that one can simply show the right hand side of the
above implication by induction on u. Indeed, this would be a great simplification,
because we would not need to deal with the recursively defined function ¥. However,
such a proof does not work. It appears as if the best way to show that the right
hand side holds for all u is to inductively show that the left hand side holds for all u.
Isolating the left hand side as the appropriate statement which would “induct” was
the main challenge to proving the theorem. Also note that because of the asymmetry
in the games G= and G, it does not follow that if Player II does not have a winning
strategy for G=, then Player II does have a winning strategy for G~ (and vice versa).
This means that we cannot simply invoke Borel determinacy to conclude that either

Player II has a winning strategy for G< or Player II has a winning strategy for G~.
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7.6.6 The main induction

We now begin the inductive proof, starting at the leaf nodes of U.
Lemma VII.20. Fiz l,i € w. Fizu € U, a leaf node of U. Then ®(u,l,1).

Proof. Fix arbitrary t € <“w and h : <“w — w. We will show
(3 T )Wt u,l,i)d,
and the proof will be complete. By the definition of U, it suffices to show
(3¢ 35 )(Fv € w) (Vo D) gu(z) (i) = 0.

Let y € “w be such that y J7 t. Since g, is continuous, there is some t' € <“w and
v € wsuch that y 3¢ 3¢ and (Vo J t') gu(x)(7) = v. The ¢ J7 ¢ and v are as

desired. O

Lemma VIIL.21. Fiz l,i € w. Fizu € U, a leaf node of U. Then Z=(u,l,i) and

= (u,l,1).

Proof. We will just show ==(u,l,7), as the proof for Z>(u,l,7) is similar. Fix an
arbitrary ¢ € <“w such that VU(t,u,l,i) = 1. Once we show that for some h Player
II has a winning strategy for G=(¢, h,u,l,7), we will be done. However, by the
definition of ¥ for leaf nodes and the definition of G=(¢, h, u, [, 1), we see that for any
h, any strategy for Player II (where he ensures that the sequence being constructed

is infinite) is a winning strategy! O

We are now ready to handle the non-leaf node case of the inductive proof. We
will use three lemmas to show ®(u,l,4),=<(u,l,4), and =~ (u, [, 1) respectively.

The next lemma is the heart of the theorem, and it is where we use the facts
about reachability and the complexity of W. In fact, it is the only place where we

need these results. This makes it a natural bottleneck for the theorem.
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Lemma VII1.22. Fizl,i € w. Fiz u € U, a non-leaf node of U. Assume
(Vn € w)[E5(u"n,1,i) AZ7(u"n,l,i)].

Also assume that V(t,u',1,1) is well-defined for all t and all W' € U extending u

(including u itself). Then ®(u,l,i).
Proof. We will show ®(u,l,7). Fix arbitrary t € ““w and h : ““w — w. We will show
(3 T ) Ut u,l,i)d,

and the proof will be complete. Since W(t',u,l,7) is well-defined for all ', it suffices

to construct ¢ J7 ¢, n € w, and ¢ € {0, 1} such that
t" is not S(u,n, ¢, 1,i)-reachable.

Our method of proof is to describe a procedure that we want to terminate in
finitely many steps. Assuming the procedure does not terminate, we will reach a

contradiction. The reader should use the following diagram to visualize the proce-
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dure:

Let Sy := S(u,0,0,1,i). There are two cases. Either ¢ is Sy-reachable or not.
If it is not, then we are done by defining #' := ¢, and in this case V(' u,l,i) = 1.
Otherwise, t is Sp-reachable, so we proceed as follows:

By Corollary VII.17, the set Sy is Al in the code for g. Since A is not A} in the
code for g and <, is transitive, we have that A is not Al in Sy. This implies that A
is not A} in Sp. We may now use Proposition VIL9 to get ¢o J5 ¢ such that ¢y € Sp.

Since ty € Sy, fix ng > 0 satistying
\Il(to, u’\no, l, Z) =0.

Since we have assumed =~ (u"ng,l,4), fix an hy > h such that Player II has a
winning strategy for G~ (to, ho,u"no,1,7). Let 1my be such a strategy. Note that
(to, ho) <* (t,h). Apply 1 to the pair (fo, ho) to get the pair (fo, ho) <* (to, ho)-

Let Sy := S(u,ng,1,1,7). There are two cases. Either to is S;-reachable or not.
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If it is not, then we are done by defining ¢’ := #;, and in this case V(' u,l,i) = 0,
Otherwise, t, is Si-reachable, so we proceed as follows:
As before, A is not A} in S, so we may use Proposition VIL.9 to get t; on to

such that ¢; € S;. Since t; € 5, fix ny > ny satisfying
\I/<t1, uﬁnl, l, Z) =1.

Since we have assumed Z=(u"ny, [, 1), fix an hy > ho such that Player IT has a winning
strategy for G=(t1, h1,u, 1, 7). Let 1; be such a strategy. Note that (t1, k1) <* (fo, ko).
Successively apply both 7y and 7; (the order does not matter) to the pair (1, hy) to
get the pair (¢, i~z1) <* (1, hy).

We may continue by defining Sy := S(u,n1,0,[,i) and breaking into cases as
before. To finish the proof, we will show that this procedure will eventually terminate.
Suppose, toward a contradiction, that the procedure goes on forever. This means

that we have constructed a sequence of elements of H
(t,h) >* (to, ho) >* (fo, ho) >* (t1, h1) >* (£1, hy) >* ..,
a sequence of numbers
ng <nq < ...,
and a sequence of strategies

Mo, My ---

such that for each k, n; is a winning strategy for G~ (¢, hy, u"ny, [, 1) if k is even,

and 7 is a winning strategy for G=(ty, hy, u " ny, [,4) if k is odd. Let

k

For each k € w, since 7, has been applied infinitely many times in the construction

of the sequence of elements of H and by the rules for the game corresponding to 7,
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we see that
Gu—n,, ()(3) > 1 if k is even,
(Vk € w)
Gu—ny () (1) <1 if k is odd.
This, however, contradicts the fact that lim, . gu—rn(z)(7) exists. O

The next lemma is much simpler than the previous one. The idea is that to get a
winning strategy for Player II of the G= game associated to an internal node u € U,
we combine together winning strategies for the Player II’s of the G= games associated

to the child nodes of u. However, the assumption that W (¢, u,(,i) = 1 is important.

Lemma VII1.23. Fizu € U, a non-leaf node of U. Fix l,1 € w. Assume
(Vn € w)[®(u"n,l,i) AZ=(u"n,l,1)].
Then Z=(u,1,1).

Proof. Fix arbitrary ¢ € <“w. Assume W(¢,u,l,i) = 1. Since we are assuming this,

fix p € w and h satisfying
(Vt' 3, t)(Vn' > p)[W(t',u"n',10) = (', u"n' 1) = 1].

We will now describe a winning strategy for Player IT for the game G=(t, h,u, 1, 1),
and the proof will be complete.
Let (tg, ho) be the first move of Player I. We will describe the first move (¢, hy)

of Player II. Since ®(u™(p +0),1,1), let t5 3} to satisfy
Since (p+ 0) > p, we have

U(ty,u" (p+0),1,4) = 1.
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Since we assumed Z=(u"(p + 0),1,4), fix hfy > hg and a winning strategy 7,0 for
Player II for the game

G= (o, ho, u™ (p+0),1,2).

Note that (t), hy) <* (to, ho). Apply 1o to the pair (t;, hy) to get the pair (t1,hy) <*
(o, ho). This concludes Player II's first move.
Now let (3, he) be the second move of Player I. We will describe the second move

(t3, h3) of Player II. Since ®(u™(p + 1),1,1), let ¢; Jj 1, be such that
U(ty,u (p+1),0,9) .

Since (p+ 1) > p, we have
U(th,u (p+1),1,i) =1.

Since we assumed Z=(u"(p + 1),1,4), fix by, > hy and a winning strategy 7,41 for
Player II for the game

Note that (t}, hy) <* (t2, he). Successively apply both 7,0 and 7,.; (the order does
not matter) to the pair (¢,, h}) to get the pair (t3,hs) <* (t5, h}). This concludes
Player II's second move.

The pattern continues like this. We claim that no matter what moves Player I
makes, Player II will win the game G=(¢, h, u,[,7) by playing this way. The following

diagram helps to visualize the play of the game. The circled entries show which parts
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of the construction were done by Player II.

e

e B B e @ ®

Here is why Player II wins: when the game finishes, what has been constructed

is a sequence of elements of H
(t7 h/) Z (t()?h'()) Z* (t67h’6) Z* (thhl) Z (t27h2) 2* (t,27h/2) 2* (t37h3) Z

and a sequence of strategies
77p+07 anrl)

such that for each n € w, 0,4, is a winning strategy for Player II for the game

Let

Consider any n € w. The strategy 7,:, was used infinitely many times for the

construction of the sequence of elements of H. All that was done for the construction
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of that sequence that did not come from the function 7,,, can be viewed as the moves
of Player I in the game associated to 71,4,. Because 1,,, is a winning strategy for

that game, Player II has won that game, so
Gu~(p+n) (:C)(Z) <l
Thus, we have shown

(Vn S w) Gu~(p+n) (‘7))(@) <l

Since
gu(w)(@) = I gu—p()(i),
we have
gu(@)(1) < 1.
That is, Player IT has won the game G=(¢, h, u,,1). O

We have an analogous lemma:

Lemma VII1.24. Fiz u € U, a non-leaf node of U. Fix l,1 € w. Assume
(Vn € w)[®(u"n,l,i) N=Z7(u"n,l, ).

Then == (u,l,1).

Proof. The proof is very similar to that of the last lemma, so we will not repeat

it. O
Combining the last five lemmas, we immediately have the following:

Corollary VII.25. For allu € U and l,i € w,

O(u,l,i) NZ=(u,1,4) ANZ7(u,l, 7).
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Proof. This is an easy proof by induction on the nodes of the well-founded tree U.
Fix [,1 € w.

Suppose u € U is a leaf node of U. By Lemma VII.20, ®(u,[,7) holds. Hence, for
each t, U(t,u,l, i) is well-defined. By Lemma VII.21, both =Z=(u,l,i) and = (u,1,1)
hold.

Suppose u € U is a non-leaf node of U. Assume that for all n € w, ®(u"n,l,1),
E=(u"n,l,i), and = (u"n,1,i) hold. Also assume that for all ¢ and v’ € U properly

extending u, W(t, ', [,7) is well-defined. Since (Vn € w) ®(u"n,l, 1), for all ¢ we have

S

(t,u,l,7) is well-defined. By Lemma VII.22, ®(u,l,i) holds. By Lemma VII.23,

==(u, 1,4) holds. By Lemma VII.24, Z>(u, [,4) holds. This completes the proof. [

7.6.7 Minor cleanup work

At this point, we are essentially done. The hard work was done in Lemma VII.22,
and the corollary above can be used like a black box. However, as a side effect of
keeping the hardest part of the proof (the induction on U) simple, we are left with
some minor cleanup work. The next two lemmas as well as the theorem in this
section and the next should be viewed as easy consequences of the corollary above.
The reader may skip this section, trusting us that the lemmas are true when we use
them in the theorem.

The next lemma could be proved for arbitrary v € U instead of just () € U, but

we do not need such generality.

Lemma VII1.26. Fiz i € w. Assume

(VI € w)[®(0,1,7) NZ7(0,1,7)].
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Then
(Vt € <“w)(Vh)
(3 T3 )3 e w)
Ut 0,1,i) =1.
Proof. Fix arbitrary t € <“w and h : <“w — w. We will show
(3 T35 )3 e w)U(,0,1,i) =1,
and the proof will be complete. This is another proof where we describe a procedure

we want to terminate in finitely many steps. If the procedure goes on forever, then

we reach a contradiction. Here is the relevant diagram to guide the reader:

;l HO il() h;l iil
Since ®((),0,7) holds, there is some ¢y J5 t satisfying

U(to,0,0,7) | .
If U(ty,D,0,7) =1, then we are done by defining ¢’ := tq and [ := 0. If not, then
\I’(to, @, O, Z) =0.

Since we have assumed =~ (0, 0,14), fix a function hg > h and fix a winning strategy

1o for Player II for the game

g>(t07 hOa ma 07 Z)
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Note that (to, ho) <* (t,h). Apply 1o to the pair (to, ho) to get the pair (fo, ho). Note
that (7?0, il()) S* (to, ho)

Since ®((, 1,7) holds, there is some t; g;m t, satisfying
U(ty,0,1,4) 4.
If W(ty,0,1,7) =1, then we are done by defining ¢’ := ¢; and [ := 1. If not, then
U(ty,0,1,i) = 0.

Since we have assumed =~ (0, 1,14), fix a function hy > ho and fix a winning strategy
1 for Player II for the game

g>(t17h17 Q)a 172)

Note that (t1,h) <* (o, fzo). Successively apply both 7 and 7, (the order does not

matter) to the pair (¢1,h1) to get the pair (i1, ;). Note that ({1, hy) <* (t1, h).
The pattern continues like this. We claim that the procedure eventually stops.

Suppose, towards a contradiction, that it goes on forever. This means that we have

constructed a sequence of elements of H
(t,h) >* (to, ho) >* (fo,ho) >* (t1, k1) >* (f1, 1) >* ...

and a sequence of strategies
Mo, My ---
such that for each [ € w, n; is a winning strategy for Player II for the game

g>(tl7 hl7@7l7i>‘

Let

T = Utl'
!
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Consider any [ € w. The strategy 7, was used infinitely many times in the con-
struction of the sequence of nodes. All that was done for the construction of the
sequence of nodes that did not come from the function n; can be viewed as the moves
of Player I in the game associated with 7;,. Because 7; is a winning strategy for that

game, Player IT has won that game, so

go(x)(2) > L.
Thus, we have shown
(VI € w) gg(x)(2) > L.

This is a contradiction. O

This next lemma is not needed for the proof of the main theorem, but it will be

used for the generalization in the next section.

Lemma VII1.27. Fiz 1 € w. Assume
(VI € w)[®(0,1,i) ANZ=(D,1,3) A= (0,1,4)].
Then

(V(t,h) € H)
(3, h") < (t,h)) (3 € w)

Player II has a w.s. for G=(t', 0/, 0,1,1).

Proof. First, use Lemma VIL.26 and the fact that Z=(),1,7) holds to get (to, hy) <*
(t,h) and Iy € w such that Player I has a winning strategy 1o for G=(to, ho, 0, ly, 7).
If [y = 0, we are done by setting t’ := tq, h' := hg, and [ := [,.

If not, then let Iy := o — 1. Applying ®(0,1;,4) followed be either Z=((, 1, 1)

or Z7(0,11,1), we get (t1,h1) <* (to, ho) such that Player II has a winning strategy



203

m for either G=(t1,hy,0,11,7) or G>(t1,hy,0,11,4). If 1y is a winning strategy for
G~ (t1,h1,0,11,7), then by combining the strategies 7y and 7; into one, we have a
winning strategy for G= (g, ho, 0, ly, 7). We are done by setting ¢’ := t1, b’ := hy, and
l:=1.

Otherwise, 7, is a winning strategy for G=(t1,h1,0,1;,7). We may inductively
continue the process now starting at {; until it eventually stops (in a finite number

of steps). O

An alternative induction for proving the main lemmas would have involved prov-
ing the generalization of the last lemma to an arbitrary u € U, but we believe the

current proof is simpler. That is, we chose to keep the induction on U simple.

7.6.8 Proof of theorem from lemmas

Recall the function f, from Definition VII.13:

(Vo € “w)(Vi € w) fa(x)(i) = Rep(Ca,;)(x).

Theorem VII.28 (Borel Dominator A} Coding Theorem). For each A C w, when-

ever g : “w — “w s a Borel function satisfying
(Vo € “w)(3c € w) fa(z)(c) < g(x)(c),

then A is A in any code for g.

Proof. Fix A C w, but assume without loss of generality that it is infinite and A{ in
every infinite subset of itself. Fix a Borel function ¢ : “w — “w such that A is not
A% in a fixed code for g. Also fix a well-founded tree U C <“w and for each u € U

a Borel function g, : “w — “w as was done at the beginning of this section. At this
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point, we may freely use the notation and lemmas used so far within this section.

We will construct an x € “w satisfying
(Vi € w) g()(@) < f()(),
and the proof will be complete. Recall that g = gy. As a result of Corollary VII.25,
(Vi, 1 € w)[®(D,1,3) NE=(0,1,3) ANZ7(D,1,4)].
We are also free to apply Lemma VII.26. We will construct a sequence of nodes
lhEth Et .

and our x will be |, t;.

The following diagram will guild the reader through this construction:

HO hO Hl hl

First, apply Lemma VII.26 and the fact that (VI € w)Z=Z<(0,1,0) holds to get
to 2* 0, ho : ““w — w, Iy € w, and 1y such that 7y is a winning strategy for Player
IT for the game

gg(t()) hOa ®7 lOa O)
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At this point, we have ensured that g(x)(0) < [y (because we will apply the strategy
7o infinitely many times during the construction of x, and all else that is done in
the construction of the sequence = can be viewed as the moves of Player I in the
game G=(to, ho,0,10,0)). Now, extend ¢y to a node t{ Ty, to such that |tf| > Io
and t) € Cap. This is possible because since t, J* 0, to does not “hit” A. That
is, (VI < |to])to(l) ¢ A. We have now decided that f(x)(0) > l,. Next, apply the

strategy 7o to the pair (), ho) to get the pair (o, ho). Note that
(fo, ho) <* (g, ho) < (to, ho) <* (0, ho).

Next, apply Lemma VII.26 and the fact that (VI € w)Z=<(0,1,1) holds to get
(ty, hy) <* (fo, ho), Iy € w, and n; such that 7; is a winning strategy for Player IT for
the game

gg(tly h17 ®a lla 1)

At this point, we have ensured that g(x)(1) < [; by the way we will construct the
rest of z. Now, extend ¢, to a node ¢} Jj, t; such that [t]| > [; and t| € Cy;.
This is possible because since t; J* t{, t; does not hit A more than t{, does. That
is {l < |t5| : t4(l) € A} and {l < [|t1] : t1(I) € A} both have size 1. We have now
decided that f(z)(1) > Il;. Next, successively apply both 79 and 7; (the order does

not matter) to the pair (£, h1) to get the pair (£, h1). Note that
(flvill) S* (t/17h1) S (t17 hl) S* (-EO; BU)

Continue this procedure forever. We have constructed a sequence of elements of
H

(to, ho) > (th, ho) >* (Lo, ho) >* (t1, hy) > (£}, hy) >* (I, hy) >* ...

such that

(Vi e w)t;, € Cay,
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a sequence of numbers

lo, 1y, ...

such that

(Vi € w) |t > 1,
and a sequence of strategies

Mo, My ---

such that for each ¢ € w, n; is a winning strategy for Player II for the game
gg(tu hia Q), l’i? Z)

Let

By the way the strategies 7; were applied, we have
(Vi € w) g(a)(i) <.

At the same time since for each i € w we have |t}| > I;, t; € C4;, and x J t, we have
(Vi € w)l; < f(x)(3).

Thus,

(Vi € w) g(x) (i) < f(x)(2),

and the proof is complete. O
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7.7 Borel Challenge-Response A} Coding Theorem

The lemmas developed in the previous section allow us to prove a more general
result. That is, we may replace the challenge-response relation (“w,“w, ) with any

relation which satisfies the following property:

Definition VII.29. A challenge-response relation (“w,“w, R) has property X if

there is a continuous function ¢ : “w — “w satisfying
(Vy € “w) =c(y) Ry.

One can verify that essentially all of the challenge-response relations associated
with cardinal characteristics of the continuum (are equivalent to ones which) have
property X. For example, fixing a standard bijection 1 from “w to [w]¥, we see that

the relation (Yw,“w,S) defined by
1Sz iff n(xq) is split by n(xs)

has property X'. As another example, after fixing a standard way to code subtrees
of <“w by elements of “w, the relation (“w,“w, W) has property X where x1 Wz, iff
either z; codes an ill-founded tree To C <“w, or z; and xo code well-founded trees
T, C <“w and Ty C <“w respectively and the rank of T} is less than or equal to the
rank of T5.

Out of all relations R C “w x “w which satisfy property X, the weakest is non-
equality of reals. Specifically, the reader can verify that R has property X iff there
exists a morphism (¢_, ¢, ) from (Yw,“w, R) to (“w,“w, #) such that ¢_ is continuous
and ¢, is the identity function. We will use this to state a remarkably strong
corollary:.

The proof of this next theorem is similar to that of Theorem VII.28, except we

use G~ instead of G= to get finer control over the behavior of g(z). We will still use
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the sets C4;, but we will have to use a different function f : “w — “w. Each node ¢}
hits C'4; not at a level which is important, but such that the last value ¢(]t}|—1) € A

of ¢} is important.

Theorem VII.30 (Borel Challenge-Response A} Coding Theorem). Let (“w,“w, R)

be a challenge-response relation and fix a continuous function ¢ : “w — “w satisfying
(Vy € “w) =c(y) Ry.

For each A C w, there is a Baire class one function f : “w — “w such that whenever

g :“w — “w is a Borel function satisfying
(Vo € “w) f(x)Rg(x),
then A is A in any code for g.

Proof. Fix A C w, but assume without loss of generality that it is Al in every infinite
subset of itself. Fix a surjection s : A — <“w such that for each t € <“w, s7!(¢t) is
infinite. For each i € w, let C4; C ““w be the cloud defined in Definition VII.13.

In the proof of Theorem VII.28, we defined f(x)(i) to be the level where x “hits”
Ca,. Here, we will define f(z) to be the concatenation of finite sequences, where the
(¢4 1)-th finite sequence gets concatenated when x hits C4 ;, and that finite sequence
is determined by the value of x at the level where x hits C'4 ;. That is, we will define
a function

frw = (Sw),

and then define f : “w — “w by

f(z) = f2)(0) f(2)(1)" ..

(and f(z) is some arbitrary value if all but finitely many of the sequences f(x)(0),

f(z)(1), ... are empty). Recall that given x € “w and i, € w, [ | € Cy,; implies
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z(l — 1) € A. Define f as follows:

~ s(x(l—1)) ifx[leCyy
f(@)(@) ==

1] otherwise.

Said another way, f(z)(i) is the s(z(l—1)) such that x(l—1) is the (i4 1)-th element

of A in the sequence
z = ((0),2(1), ...
(and is ) if the sequence does not have at least (i + 1) elements of A).

Fix a Borel function ¢ : “w — “w such that A is not Al in a fixed code for g. We

will construct an x € “w satisfying

and the proof will be complete. At this point, we may freely use the notation and
lemmas within the last section (because g is Borel, A is Al in any infinite subset
of itself, and A is not Al in the code for g). Recall that g = gyp. As a result of

Corollary VII.25,
(Vi, 1 € w)[®(D,1,3) N==(0,1,3) A=~ (0,1,1)].

This allows us to apply Lemma VII.27, which is actually the only lemma we need.
We will construct a sequence of nodes t5 = ¢t; C ..., and our x will be Uz t;. The
reader can use the same diagram which appears in the proof of Theorem VII.28 as a
guide for this construction.

First, apply Lemma VIL.27 to get (to, ho) € H, ly € w, and 7y such that 7y is a

winning strategy for Player II for the game

g:(t()) hOa ®7 lOa O)
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At this point, we have ensured that g(x)(0) = [y (because we will apply the strategy
7o infinitely many times during the construction of x, and all else that is done in the
construction of the sequence = can be viewed as the moves of Player I in the game
G=(to, ho, 0,10,0)).

We will now make use of the continuous function ¢. Let vy € <“w be the longest
finite sequence such that for each y € “w extending (ly), c(y) extends vg. By hypoth-
esis on the function s, s7*(vg) C A is infinite. Also, (VI < |to|) to(l) € A, so we may
extend ty to a node t; Jp, to such that ¢; € Cs and s applied to the last element

of the finite sequence ¢, is v9. We have now decided that

f(2)(0) = vo,
and hence f(x) will extend vg. Next, apply the strategy no to the pair (ty, ho) to get

the pair (fo, ho). Note that
(fo, ho) <* (th, ho) < (to, ho) <* (0, ho).

Next, apply Lemma VII.27 to get (t1, h1) <* (o, ilo), 1 € w, and 7n; such that 7,

is a winning strategy for Player II for the game
g:(th hlu (Z)a l17 1)

At this point, we have ensured that g(z)(1) = I3 by the way we will construct the
rest of x. We will again make use of the continuous function ¢. Let v; € <“w be such
that vy vy is the longest finite sequence such that for all y € “w extending (lo, 1),
c(y) extends vi v;. By the hypothesis on the function s, s7'(v;) C A is infinite.
Also, since t; J* t{,, t; does not hit A more than ¢ does. Hence, {l < |t1| : t;(I) € A}
has size 1. We can now easily extend ¢ to a node t| Jj, t; such that t] € Cso and s

applied to the last element of the finite sequence ¢} is v;. We have now decided that

f(@)(1) = oy,
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and hence f(z) will extend vg v;. Next, successively apply both 7y and 7; (the order

does not matter) to the pair (¢1, h;) to get the pair ({1, h1). Note that
(flvill) S* (t/17h1) S (tlyhl) S* (-EO;E/O)'

Continue this procedure forever. We have constructed a sequence of nodes

€<w

Vo, V1, - w,

a sequence of elements of H
(to, ho) > (th, ho) =* (fo, ho) >* (t1, he) > (£, h1) >* (1, ) >* ..

such that for each 7 € w

t; € Cay
and

s(ti(lti] — 1)) = v,

a sequence of numbers

lo, 1y, ...,
and a sequence of strategies

Mo, T -+

such that for each ¢+ € w, n; is a winning strategy for Player II for the game
g:(ti7 hi? ®a li7 Z)

Let

By the way the strategies n; were applied, we have

(Vi € w) g()(i) = L.
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Define y € “w to be
y = g(x) = (lo, 1y, ...).

Now, y extends (lp), so by the definition of vy, ¢(y) extends wvg. Similarly, since
y extends (lp,l1), c(y) extends vy v;. Continuing this argument we see that c(y)

extends vy v1 ... Since ¢ is continuous, in fact vy v{ ... is an infinite sequence, so

c(y) = vy vy ...

At the same time, by the definition of f,

(Vi € w) f(x)() = v,

hence

Thus, we have shown

By the hypothesis on ¢, we have

~f(z)Ry(x).
This completes the proof. n

We now have a very strong corollary. The only work comes from considering
arbitrary Polish spaces instead of “w, which is generality we have suppressed up

until this point.

Corollary VIIL.31. Let X and Y be Polish spaces with X uncountable. For each
A Cuw, there is a Borel f: X — Y such that whenever g : X — 'Y 1is Borel, then at

least one of the following holds:
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1) (Jz € X) f(z) = g(z);
2) A is AL in any code for g.

Proof. Fix A C w. First, we claim that our choice of an arbitrary polish space Y as
opposed to “w does not matter. That is, let r : “w — Y be a continuous surjection.
Given a Borel g : X — Y, there is a Borel function g : X — “w which makes the

following diagram commute:

I
g , \LT
7/
Ve
Furthermore, if A is Al in any code for g, then A is Al in any code for g. Suppose
that we have proved that for some fixed Borel f': X — “w, whenever ¢’ : X — “w

is Borel and satisfies (Vz € X) f'(z) # ¢'(z), then A is A} in any code for ¢’. Define

f to make the following diagram commute:

“w
7k
X - e Y
Now suppose ¢ : X — Y satisfies (Vo € X) f(x) # g(z). We now have (Vz €
X) f'(x) # g(z). This implies A is Al in any code for g. This in turn implies that
A is Al in any code for g. Thus, for the remainder of the proof, we may assume
Y =“w.

Next, we claim that the domain “w of the functions in the theorem above can be
replaced with “2 at the cost of slightly increasing the complexity of f. The point is
that every subset of <“w which is a cloud corresponds to a subset of <“2 which is
also a cloud. We leave this as an exercise to the reader, as the idea is simple but the

details are messy.
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The final piece of the puzzle is a standard fact: since X is an uncountable Polish
space, there exists a Borel embedding n : “2 — X such that whenever f :“2 — “w
is Borel, there is a Borel function f : X — “w causing the following diagram to

commute:

Furthermore, given Borel f and f causing this diagram to commute, if A is Al in
any code for f, then A is Al in any code for f.

We are now almost done. Let f : “2 — “w be Borel and such that whenever
g %2 — “w is Borel and satisfies (Vo € “2) f(x) # g(x), then A is A} in any code
for g. Let f be the function given by the paragraph above (from f). Now suppose
G : X — “w is Borel and satisfies (Vo € X) f(z) # g(x). Let g : “2 — “w be the
Borel function g on. We have (Vz € “2) f(z) # g(z), so A is A} in any code for g.

By our comments at the end of the last paragraph, we have that A is Al in any code

for g. O

Note that in the theorem, instead of considering the set F of functions f whose
corresponding f is Borel, we could have considered the set F’ of Borel functions from
“w to Ord where Ord is given the discrete topology. Our proof of the theorem pushes
through to give us functions ¢_ : P(w) — F' and ¢, : F' — P(w) with the same
properties as above. This ordering is closer to what is studied in [11].

One might further hope that there is an application to the Steel Hierarchy of
Norms (also called the FPT Hierarchy for “First Periodicity Theorem”) [35]. That
is, giving the ordinals the discrete topology, one might hope to show that for each
A C w and each countable limit ordinal « that is the image of a Borel function,

there exists a Borel ¢ : “w — « such that if ¢ : “w — « is Borel and there exists a
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continuous 7 : “w — “w satisfying

(Vo € “w) p(x) < ¢(i(x)),

then A is constructible from a “Borel code” for ¢. Currently, our arguments only
show we can ensure that A is constructible from the pair consisting of a “Borel code”
for ¢ and a Borel code for i. Moreover, it can be checked that our particular encoding
scheme cannot accomplish this stronger goal. The existential quantification of the

continuous function ¢ seems to drastically change the situation.



CHAPTER VIII

Conclusion

Let us end by asking some questions.

8.1 Some Questions

We have seen various encoding schemes for functions from a set X to x where &
is an infinite cardinal and |X| > 2. We ask the general question of whether similar
encodings can exist but assuming |X| < 2%. For example, assuming -CH, what is
the collection C C P(w) of sets A C w for which there exists an f : w; — w such
that if g : w; — w satisfies f < g, then A € L[g]? By Section 2.8, C contains all
Al subsets of w (because those sets can be encoded into functions from w to w, let
alone functions from w; to w). Can C ever be strictly larger than Al? Is it always
strictly larger? The following is related, because Sacks forcing (to add a single real)
is in some sense the gentlest way to add a real. Note that by Theorem V.35, a model

which affirmatively answers the following question must satisty -CH.
Question VIIL.1. Is it consistent that Sacks forcing is weakly (wq,w)-distributive?

Taking a step back, we ask what morphisms exist from combinatorial challenge-

response relations to various recursion-theoretic orderings on P(w) and larger struc-
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tures such as P(R). The purpose of such questions is to lower bound the inherent
complexity within challenge-response relations that arise in practice (such as the
poset used in the definition of Borel boundedness, which is what we did).

Here is the most interesting question: can Theorem VII.30 be generalized beyond
Borel functions? The following definition seems appropriate. We use <* as the
relation because it is concrete but simultaneously captures the main idea for all
reasonable relations (our evidence being that the proof of Theorem VII.30 is only a
slight generalization of the proof of Theorem VII.28). Let us say that a pointclass I’
of functions from “w to “w has the encoding property if for each A C w, there exists

a Borel function f : “w — “w such that whenever g : “w — “w is in I' and
(Vo € “w) f(z) <" g(x),

then A is in some countable set associated to g. By “some countable set associated
to g”, we have in mind “A € HOD(c) where ¢ is any code for ¢” (assuming both
AD and that there is a canonical way to code elements of I' by reals). We require
f to be Borel simply because we believe that using more complicated functions to
encode reals is unnecessary. Indeed, we believe the encoding A +— f4 given by
Definition VII.13 suffices. When we made the generalization from Baire class one
dominators to Borel dominators, the same encoding sufficed. We naturally expect
this pattern to continue.

The problem becomes to prove from additional set theoretic axioms (determinacy
or large cardinals) that larger and larger pointclasses have the encoding property.
Just as Lebesgue measurability and the property of Baire are regularity properties, so
too should be the encoding property. What is the relationship between the encoding
property and other regularity properties? Since essentially all known regularity prop-

erties follow from determinacy, we should expect the same for the encoding property.
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It would be interesting if the encoding property coexists with determinacy, without
there being a short proof that Al has the encoding property from Borel determi-
nacy. It is possible that even with large cardinals, A} is the largest class which can
be proven to have the encoding property. This would explain the apparent difficulty
in reworking the proof that Al has the encoding property to use Borel determinacy.
We suspect that the encoding property has more in common with the Ramsey prop-
erty than with the perfect set property, the Lebesgue measurability property, or the
Baire property.

Finally, let us take a leap out of the area of this thesis and conjecture that the
axiom of determinacy implies many more encoding theorems exist. If we have func-
tions f,g : “w — “w and a relation R C “w x “w that is a prewellordering of “w of
order type « such that

(Vo € “w) f(z)Ry(x),
then this is similar to having functions f,§ : “w — « satisfying
(V2 € “w) f(z) < (o).

Question VIIIL.2. Assume AD. For each limit ordinal o < © and for each A C “w,
s there is a function f : “w — a such that whenever g : “w — « satisfies f < g,

then A € L(*w, g)?

This is a question about subsets of “w rather than subsets of w, but we cross our

fingers and conjecture that it is true.
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APPENDIX A

Absoluteness of Domination for Nice Functions

The following observations are natural for investigating the domination ordering

of Borel functions.

Definition A.1. Given a transitive model M of ZF+DC and a Borel code ¢ € (“w)M,
let cjp; refer to the object in M coded by c¢. We use Borel codes interchangeably for

subsets of a Polish space or for functions from one Polish space to another.

Given a real ¢, it is a ITj property whether or not c is a Borel code [26]. That is,
the set BC C “w of Borel codes is ITl. The following illustrates the absoluteness of

membership in a Borel set:

Fact A.2. Let X be a Polish space. There is a 31 set P C X X “w and a I13 set

Q C X X “w such that if ¢ € “w is a Borel code, then
r€cy < (r,¢c) € Pe (r,¢) €Q
forallz € X.

For the remainder of this section, let M be a transitive model of ZF + DC. Let
X and Y be Polish spaces. Combining the fact above with II1 absoluteness, we

immediately have the following:

Corollary A.3. Let a,b,c be Borel codes in M. The following hold:
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1) ap C by iff ay C by,

2) ay = by iff ay = by;

3) ay = by Uep iff ay = by Ucey;

4) ayr = by Ny iff ay = by Ney;

5) ay =0 iff ay = 0.
Another useful consequence of IT} absoluteness is this:

Corollary A.4. If ¢ is a Borel code in M for a subset of X, then cpy = cy N M.

A consequence of IT} absoluteness is this:

Corollary A.5. Suppose w; C M (so I formulas are absolute between M and
V). If ¢ is a Borel code in M for a subset of X x Y, then (cas is a function)™ iff

cy s a function. Furthermore, if (cyr is a function)™, then ¢y = ¢y | M.
The following is relevant to our investigation:
Proposition A.6. If a and b are Borel codes in M for functions from X to w, then
(arr < bar)M iff ay < by.
Proof. Fix such a and b. By IIj absoluteness,
M = (Ve e N)(Vn,m € w)[(z,n) € ay A (z,m) € byy = n < m]
iff ViEWzeN)(Vn,mew)|[(z,n)€ay A(x,m)e by —n<mj,
which is what we want. [
For eventual domination, we have an analogous result:

Proposition A.7. If a and b are Borel codes in M for functions from “w to “w,

then ((IM S* bM)M Zﬁ ay S* bv.



222

APPENDIX B

Tameness of Cardinal Characteristics

Zapletal has defined a notion of a cardinal characteristic being tame. Tame char-
acteristics have some desirable properties, and both cf B, (w, <) and cf B, (“w, <*) for

a < w; are tame. The following is from [46]:

Definition B.1. A cardinal characteristic is tame if it is defined as

min{|A| : A C“w A ¢(A) A (Vz € “w)(Jy € A) xRy}

where R C “w x “w is projective and the quantifiers of ¢(A) are restricted to the set

A or to the set of natural numbers.
For our purposes, this is the crucial property of tame characteristics:

Theorem B.2. Suppose that there is a proper class of measurable Woodin cardinals.
If v is a tame cardinal invariant such that v < 2¥ holds in some set forcing extension,

then v < 2% holds in the iterated Sacks extension.
Proof. See [46]. O

Thus, when we investigate a tame cardinal characteristic which we do not yet
know is provably (in ZFC) equal to 2, analyzing the effect of iterated Sacks forcing

is extremely useful. Indeed, we can learn much by adding a single Sacks real.
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We will explain why cf B, (“w, <*) is tame (a similar reason applies to both
cf By (w, <) and cf B, (Yw, <*) for each o« < wy). Let BC C “w be the set of codes
for Borel functions from “w to “w. Certainly, BC is projective. Let R C “w x “w
be such that xRy iff either ¢ BC, or simultaneously x € BC, y € BC, and the
function coded by y pointwise eventually dominates the function coded by x. The

relation R is projective. Finally, letting ¢(A) be identically true, we have

cf B, (“w, <*) = min{|A| : A C“w A ¢(A) A (Vo € “w)(3y € A) xRy},

so cf By, (“w, <*) is tame.
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APPENDIX C

Sacks Forcing and Fusion

Within this short section, we will define Sacks forcing and provide a lemma that

will help to perform fusion. We use this in Section 6.2.

Definition C.1. A tree p C <2 is perfect if it is nonempty and for each t € p, there
are incomparable t1,t5 € p extending ¢t. Sacks forcing S is the poset of all perfect

trees p C <“2 where p; < po iff p; C ps.
Given py,p2 € S, p1 L ps means that p; and p, are incompatible.

Definition C.2. Let p C <“2 be a perfect tree. A node t € p is called a branching
node if t70,t71 € p. Stem(p) is the unique branching node ¢ of p such that all
elements of p are comparable to t. A node t € p is said to be an n-th branching node
if it is a branching node and there are exactly n branching nodes that are proper
initial segments of it. In particular, Stem(p) is the unique 0-th branching node of p.
Given Sacks conditions p, ¢, we write ¢ <,, p if ¢ < p and all of the k-th branching

nodes, for k£ < n, of p are in ¢ and are branching nodes.

Lemma C.3 (Fusion Lemma). Let (p, : n € w) be a sequence of Sacks conditions
such that

Po >0 P1 =1 D2 22 ..

Then py := (V,ep Pn 15 @ Sacks condition below each p,.
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Proof. This is standard and can be found in introductory presentations of Sacks

forcing. See, for example, [24]. O

The sequence (p, : n € w) in the above lemma is known as a fusion sequence. The

following will help in the construction of fusion sequences.

Lemma C.4 (Fusion Helper Lemma). Let S be Sacks forcing. Let R : <“2 — 'S be a

function with the following properties:
1) (Vs1, 80 € <92) 59 J 51 implies R(s9) < R(s1);
2) (Vs € <“2) Stem(R(s™0)) L Stem(R(s™1)).

For each n € w, let p, be the Sacks condition

Pn = U{R(s) s € "2}
Then
R(0) =po > p1 >0 p2 >1p3 >2 ...
s a fusion sequence.
Proof. Consider any n > 1. Certainly p, 2 p,41, because for each s € "2, R(s) 2
R(s™0) U R(s™1). To show that p,, >,_1 pni1, consider a k-th branching node ¢ of

pp, for some k < n — 1. One can check that there is some s € *2 such that t is the

largest common initial segment of Stem(R(s70)) and Stem(R(s™1)). Since
Stem(R(s0)) UStem(R(s™1)) C R(s”0)UR(s™1) C pua1,

we have that ¢ is a branching node of p,.;. Thus, we have shown that for each

k < n — 1, each k-th branching node of p, is a branching node of p,.;. Hence,

Pn Zn—l Prn+1- O]
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In the proposition above, if we define
q:={\Pn;
then we have the representation
q={t € <¥2:tC Stem(R(s)) for some s € ~“2)},

and every x € [g] is uniquely determined by the set of s € <2 for which Stem(R(s)) C

x.
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APPENDIX D

Sacks Forcing and Continuous Reading of Names

This section may be useful to anyone who works with Sacks forcing (especially the

final proposition). The following is commonly called “continuous readings of names”:

Proposition D.1. Let p be a Sacks condition. Let 7 be such that p IF (7 € “w).
Then there is some q¢ < p and a name ¢ for a continuous function from [q] to “w,

which is coded by a Borel code in 'V, satisfying
ql-(9(6) =7)
where ¢ is the canonical name for the generic real.

Proof. We will define a function R : <¥2 — S satisfying conditions 1 and 2 of
Lemma C.4. At the same time, we will also define a function N : <“2 — <“w. We will
define these by induction on the length of their input. Let R()) = p and N(0) = 0.
Now, suppose that s € "2 and we have defined R(s) and N(s). Let R(s70), R(s™1),
N(s70), and N(s™1) be defined in any way such that the following are satisfied:

1) R(s70),R(s™1) < R(s);

2) Stem(R(s70)) L Stem(R(s™1));

3) IN(s~O), IN(s"1)| 2 n+ 1;
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—
4) R(s™i) IF N(s7i) C 7 for i =0, 1.

It is clear that such values exist. That is, we may initially pick R(s™0) and R(s™1)
to be strengthenings of R(s) with incompatible stems, and then strengthen them
more to decide the first n + 1 values of 7. This completes the definition of R and N.

By 1 and 2 above, the function R satisfies the conditions of Lemma C.4. Let ¢ be
the intersection of the fusion sequence given by that lemma. Let g be the continuous

function in V satisfying
(Vz € [q]) (Vs € =¥2)[Stem(R(s)) E z — N(s) C g(z)].

Let ¢ be a name for the unique continuous function in the forcing extension which
extends ¢g. Note that the continuous function in the forcing extension is coded by a

Borel code in V' (which is in fact the Borel code for g in V). We have
LIF (Vz € [§])(Vs € <“2)[Stem(R(s)) C x — N(s) C g(x)].
Since ¢ I+ ¢ € [¢], we have
q - (Vs € <¥2)[Stem(R(s)) T 6 — N(s) C g(5)).
Consider any n € w and s € "2. By the definition of &7,
R(s) IF Stem(R(3)) C o.

This means

g N R(s) Ik N(3) £ g(o).

On the other hand, [N (s)| > n and R(s) I- N(3) E 7, so

gNR(s)IFg(o) n=r7]n.
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Let p, :== U{R(s) : s € "2}. Since any extension of ¢ N p,, can be strengthened to

an extension of ¢ N R(s) for some s € "2, by density we have
qNp,lFg(e) [ n=17]n.
Since ¢ < g N p,, for all n,
glF(Vnew)g(d) In=171Tn.
Hence,
qlFg(7) =7,
and we are done. O

Something special about Sacks forcing is that we can get the function ¢ to be

one-to-one as long as p - (& ¢ V):

Proposition D.2. Let p be a Sacks condition. Let 7 be such that p IF (T € “w)
and p I+ (7 € V). Then there is some ¢ < p and a name § for a continuous and
one-to-one function from [q] to “w, where the function is coded by a Borel code in 'V,
satisfying

ql-(9(6) =7)

where ¢ s the canonical name for the generic real.

Proof. We may perform the same construction in the above proof but also with the
requirement that

(Vs € <“2) N(s70) L N(s™1).

We will show that the resulting function ¢ is injective. Suppose @ and b are names

satisfying 11 a € [g], 1 IF b € [§], and 1 I a # b. We will show that

{reS:rikg(a) # g(b)}
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is dense in S, which will establish that 1 I g(a) # ¢(b).

Pick any r € S. There exists some ' < r and s € <“2 satisfying ' IF R(s70) C a
and 7' I R(s™1) C b. Using the definition of ¢ gives us 7 I N(s~0) C g(a) and
Ik N(s™1) C g(b). Since N(s~0) L N(s~1), we have ' IF g(a) # ¢(b). This

completes the proof. n

We can generalize this proposition to handle countably many reals simultaneously.
This requires us to enhance the argument and there is no clear way to deduce it from
the proposition above (such as using a scheme to code countably many reals into a

single real)

Proposition D.3. Let p be a Sacks condition. Let 7 be a name satisfying p IF (7 :
w X w — w). For eachn € w, let 7, be a name for the function i — 7(n,1) in the
extension. Suppose that for each n € w, pIF (7, € V). Then there is some ¢ < p
and a name ¢ for a function from w x [g| to “w, which is coded by a Borel code in

V', satisfying
q - (Yn € w)[(x — g(n,x)) is continuous and one-to-one|

and

qlF (Vnew)gn,o) =1,
where o 1s the canonical name for the generic real.

Proof. We will define a function R : <¥2 — S satisfying conditions 1 and 2 of
Lemma C.4. Using the proposition above with condition p and name 79, let R(0) be
p and let gy be the name for the function given by that proposition. That is, go is a

name for a continuous and one-to-one function from [R()] to “w for which

R(0) IF go(o) = 0.
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Next, let 79 and 71 be two extensions of R()) with incompatible stems. We may
apply the proposition above to strengthen ry to some condition r(, and get a name
ho for a continuous and one-to-one function from [r}] to “w for which r/ I+ ho(6) =
71. Similarly, we may strengthen r; to some condition 7} and get a name hy for a
continuous and one-to-one function from [r}] to “w for which  IF hy(¢) = 7. For
ease of notation, let hy and h; be the functions ho and hl respectively restricted to
V. Now, since [r{] and [r}] are disjoint closed sets and hy and hy are continuous, the

function h : [r{] U [r}] = “w defined by

ho(z) if z € [r{),
h(z) =

hi(z) if z € [r]]
is continuous. However, h need not be one-to-one. Here is how we can fix this: pick
any yo € Im(hg) and y; € Im(hy) such that yo # 1 (yo can be picked arbitrarily,
and a y; must exist because [r] has more than one element and h; is one-to-one).
Let Uy 2 yg and U; > y; be disjoint open subsets of “w. Since hg is continuous, we
may strengthen r{ to some r{ so that ho“([ry]) C Uy. Similarly, we many strengthen
] to some 77 so that hy“([r]]) C U;. Define R({(0)) := r{ and R((1)) := r}. Let
g1 : [R({0))] U[R((1))] — “w be the continuous function h [ [R((0))] U [R((1))]. By
construction, g; is continuous and one-to-one. If ¢; is the name for the continuous

function with the same Borel code, then

R((0)) IF g1(0) =71
and

R((1)) 1= g1(0) = 71,

SO

R((0)) U R((1)) IF 1(6) = 1.
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We may continue like this to define R : <“2 — S along with, for each n € w, a
name ¢, for a continuous and one-to-one function from (J{R(s) : s € "2} to “w so

that
H{R(s) : s € "2} IF 4 (6) = 7.
We may now take the intersection of the fusion sequence:

g =V J{R(s) : s € "2}.

For each n € w, we have
q Ik gn(0) = Tn.

Let ¢ be the canonical name for the function from w x [¢] to “w so that
11l (Vn € w)g(n,z) = gu(x).
For each n € w,

1 IF the function z — ¢(n, ) is continuous and one-to-one

because
11F [¢] € Dom(gy)
and
1 IF g, is continuous and one-to-one.
Hence,

q IF (Vn € w) the function x — ¢(n, ) is continuous and one-to-one.

Furthermore, it can be checked that there is a Borel code in V' that codes the function

g in the extension. This completes the proof. O
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