A THEOREM OF LAJOS SOUKUP THAT EVERY FAMILY OF FUNCTIONS OF SIZE ω_1 HAS A BOUNDED SUBFAMILY OF SIZE ω

DAN HATHAWAY

ABSTRACT. Here we communicate the following theorem of Lajos Soukup: Let \mathcal{F} be a size ω_1 family of functions from ω to ω . Then there is a size ω subfamily all of whose members are everywhere dominated by a single function.

1. Introduction

One question in combinatoral set theory is whether there can exist a large family of objects such that all subfamilies of a certain size have a given property. At the 7th Young Set Theory Workshop in 2014 in Będlewo, Lajos Soukup gave a tutorial related to this topic. In private communication he explained Theorem 3.1. With his permission it is reproduced here.

2. A Theorem of Todorcevic

The main theorem uses the following theorem of Todorcevic. This comes from Todorcevic's theory of Oscillations [3] (reference TBD).

Theorem 2.1 (Todorcevic). Let $X \subseteq {}^{\omega}\omega$. Assume that X is \leq^* -unbounded. Also assume that it is countably \leq^* -directed, meaning

$$(\forall Y \in [X]^{\omega})(\exists g \in X)(\forall f \in Y) f \leq^* g.$$

Then there are $f_1, f_2 \in X$ such that

$$f_1 \leq f_2$$
.

3. Main Theorem

Theorem 3.1 (Main Theorem). Let \mathcal{F} be a size ω_1 family of functions from ω to ω . Then there is a size ω subfamily $\mathcal{F}' \subseteq \mathcal{F}$ such that there is a single function $g : \omega \to \omega$ which everywhere dominates every function in \mathcal{F}' .

Proof. There are two cases. The first case is that $\mathfrak{b} > \omega_1$. For more on the bounding number \mathfrak{b} , see [1]. There must exist a $g:\omega\to\omega$ which \leq^* -dominates (eventually dominates) \mathcal{F} . So by the pigeonhole principle, there exists a finite modification g' of g which \leq -dominates ω_1 many members of \mathcal{F} (for each $f\in\mathcal{F}$, a finite modification of g \leq -dominates f, and there are only ω many finite modifications of g). In particular, $g' \leq$ -dominates ω members of \mathcal{F} , and we are done.

The other case is that $\mathfrak{b} = \omega_1$. Fix an enumeration

$$\mathcal{F} = \{ f_{\alpha} : \alpha < \omega_1 \}.$$

By possibly increasing the functions in \mathcal{F} , get a new family

$$\mathcal{F}' = \{ f'_{\alpha} : \alpha < \omega_1 \}$$

such that

$$(\forall \alpha < \beta < \omega_1) f'_{\alpha} <^* f'_{\beta}$$

(to do this, for each f_{β} pick a f'_{β} which is the max of f_{β} and a function h which everywhere dominates $X := \{f'_{\alpha} : \alpha < \beta\}$ but is not everywhere dominated by any function in X. Hence if $\alpha < \beta$, then $f_{\beta} \not\leq f_{\alpha}$. Also assume that \mathcal{F}' is \leq^* -unbounded (to do this, replace each f'_{α} in \mathcal{F}' with the max of itself and h_{α} , where $\{h_{\alpha} : \alpha < \omega_1\}$ is an \leq^* -unbounded family).

Now \mathcal{F}' is \leq^* -unbounded and countably directed with respect to \leq^* . In fact every size ω_1 subfamily of \mathcal{F}' . of it is \leq^* -unbounded and is countably directed with respect to \leq^* .

Now let $c: [\omega_1]^2 \to 2$ be the coloring defined as follows:

$$c(\{\alpha,\beta\}) := \begin{cases} 0 & \text{if } f_{\alpha} \not\leq f_{\beta} \\ 1 & \text{if } f_{\alpha} \leq f_{\beta} \end{cases}.$$

By the partition relation $\omega_1 \to (\omega_1, \omega+1)$ (the Dushnik-Miller Theorem [2]), we have two cases:

Case 1:

$$(\exists X \in [\mathcal{F}']^{\omega_1})(\forall \{\alpha, \beta\} \in [X]^2) c(\{\alpha, \beta\}) = 0.$$

Fix such an $X \in [\mathcal{F}']$. Now X is \leq^* -unbounded and countably directed with respect to \leq^* . By Theorem 2.1, there are $f_{\alpha}, f_{\beta} \in \mathcal{F}'$ with $\alpha \neq \beta$ such that $f_{\alpha} \leq f_{\beta}$. It must be that $\alpha < \beta$. So we have $c(\{\alpha, \beta\}) = 1$, which is a contradiction.

Case 2:

$$(\exists X \in [\mathcal{F}]^{\omega+1})(\forall \{\alpha, \beta\} \in [X]^2) c(\{\alpha, \beta\}) = 1$$

Fix such an $X \in [\mathcal{F}']$. Let X be

$$X = \{f'_{\alpha_1}, f'_{\alpha_2}, ..., f'_{\alpha_{\omega}}\}$$

A THEOREM OF LAJOS SOUKUPTHAT EVERY FAMILY OF FUNCTIONS OF SIZE ω_1 HAS A BOUNDED STATE OF STATES AS A SOURCE OF STATES AS A STATE OF STATES AS A SOURCE OF STATES AS A SOURC

with

$$\alpha_1 < \alpha_2 < \dots < \alpha_{\omega}$$
.

We have

$$f'_{\alpha_1} \le f'_{\alpha_2} \le \dots \le f'_{\alpha_{\omega}}$$

That is, $f'_{\alpha_{\omega}}$ witnesses that the first ω members of X are \leq -bounded. Hence, $f'_{\alpha,\omega}$ witnesses that the set

$$Y := \{ f_{\alpha_n} : n < \omega \}$$

is \leq -bounded, which is what we wanted to show.

4. Questions

Question 4.1. Let λ, κ be cardinals. with $\kappa \leq \lambda$ and κ regular. For each cardinal μ , what is the smallest cardinal $F(\lambda, \kappa, \mu)$ such that every family of that size of functions from λ to κ has a subfamily of size μ that is \leq -bounded?

References

- [1] Blass, A., 2010. Combinatorial cardinal characteristics of the continuum, in Foreman, M. and Kanamori A. (Eds.) Handbook of Set Theory Volume 1, Springer, New York, pp. 395-489.
- [2] Dushnik, B., Miller, W., 1941. Partially ordered sets. Amer. J. Math. 63, pp 600-610.
- [3] Todorcevic, S., 1998. Oscillations of Sets of Integers. Advances in Applied Mathematics 20, pp 220-252.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF VERMONT, INNOVATION HALL, 82 UNIVERSITY PLACE, BURLINGTON, VT 05405 U.S.A.

E-mail address: Daniel.Hathaway@uvm.edu

URL: http://www.danthemanhathaway.com/ProfLife/index.html