DOMINATING A FUNCTION THAT BLOWS UP

DAN HATHAWAY

ABSTRACT. Fix a real $r \in \mathbb{R}$. We show that if $g : \mathbb{R} \to \mathbb{R}$ everywhere dominates the function $f(x) = (x - r)^{-2}$, then $r \in L[g]$. That is, r is constructible from the graph of q. This is taken from the author's PhD Thesis (Proposition V.14).

1. Main theorem

Theorem 1.1. Let M be a transitive model of ZF. Let $f: \mathbb{R} \to \mathbb{R}$ and $r \in \mathbb{R}$ be such that for each $n \in \mathbb{R}$, there is a neighborhood U of r satisfying

$$(\forall x \in U \cap M - \{r\}) \, n \le f(x).$$

Let $q: \mathbb{R}^M \to \mathbb{R}$ be in M and suppose

$$(\forall x \in \mathbb{R}^M) f(x) \le g(x).$$

Then $r \in M$.

Proof. Fix f and g as in the statement of the theorem. Let $\langle W, \prec \rangle$ be the poset defined as follows:

1) Each element of W is a pair (C, n) such that C is a closed subinterval of \mathbb{R} and $n \in \omega$. Furthermore,

$$(\forall x \in C) \, n \le g(x)$$

2) If $(C_1, n_1), (C_2, n_2) \in W$, then $(C_2, n_2) \prec (C_1, n_1)$ iff

$$C_2 \subseteq C_1$$
 and $n_2 > n_1$.

Note that $\langle W, \prec \rangle^M$ is well-founded, because if not, then within M there would be an infinite sequence $(C_0, n_0) \succ (C_1, n_1) \succ ...$, and letting $y \in \bigcap_n C_n$, we would have $(\forall n \in \omega) n \leq g(y)$ which is impossible.

Since $\langle W, \prec \rangle^M$ is well-founded in M and well-foundedness is absolute, it is well-founded in V. That is, $\langle W, \prec \rangle^M$ has no infinite paths in V.

Now, assume towards a contradiction, that $r \notin M$. We will construct an infinite path through $\langle W, \prec \rangle^M$ (in V). Assume that we have the path

$$(C_n, n) \prec (C_{n-1}, n-1) \prec \ldots \prec (C_0, 0)$$

where the elements of the path are in W^M , and assume $r \in C_n$ We will find a C_{n+1} such that $(C_{n+1}, n+1) \prec (C_n, n)$ and $r \in C_{n+1}$. Repeating this procedure will give us an infinite path through $\langle W, \prec \rangle$, which is a contradiction.

Since $r \notin M$, there is some neighborhood U of r such that

$$(\forall x \in U \cap M) n + 1 \le f(x).$$

Since U is a neighborhood containing r, fix a closed interval $\tilde{C} \subseteq U$ of M containing r. Since \tilde{C} and C_n are two closed intervals of M containing r, define $C_{n+1} := \tilde{C} \cap C_n$. Now C_{n+1} is also a closed interval of M and it satisfies

- $C_{n+1} \subseteq U$
- $r \in C_{n+1}$
- \bullet $C_{n+1} \subseteq C_n$.

Now

$$(\forall x \in C_{n+1}) n + 1 \le f(x) \le g(x).$$

Hence, $(C_{n+1}, n+1)$ is in W^M . This is what we wanted to show. \square

Corollary 1.2. Fix a real $r \in \mathbb{R}$. Let $f : \mathbb{R} \to \mathbb{R}$ be the function

$$f(x) := \begin{cases} \frac{1}{(x-r)^2} & \text{if } x \neq r, \\ 0 & \text{if } x = r. \end{cases}$$

Let $g : \mathbb{R} \to \mathbb{R}$ everywhere dominate f. Then $r \in L[g]$. That is, r is constructible from the graph of g.

REFERENCES

- [1] Blass, A., 2010. Combinatorial cardinal characteristics of the continuum, in Foreman, M. and Kanamori A. (Eds.) Handbook of Set Theory Volume 1, Springer, New York, pp. 395-489.
- [2] Hathaway, D., 2015. Generalized Domination. University of Michigan. Phd dissertation.
 - http://www.danthemanhathaway.com/ProfLife/NotesAndOther/index.html
- [3] Jockusch, C., 1968. *Uniformly introreducible sets*. J. Symbolic Logic, Volume 33, pp. 521536.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF VERMONT, INNOVATION HALL, 82 UNIVERSITY PLACE, BURLINGTON, VT 05405 U.S.A.

 $E\text{-}mail\ address\text{:}\ \mathtt{Daniel.Hathaway@uvm.edu}$

URL: http://www.danthemanhathaway.com/ProfLife/index.html